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vPrefae
The automation of spei� mathematial tasks suh as theorem prov-ing and algebrai manipulation have been muh researhed. However, therehave only been a few isolated attempts to automate the whole theory for-mation proess. Suh a proess involves forming new onepts, performingalulations, making onjetures, proving theorems and �nding ounterex-amples. Previous programs whih perform theory formation are limited intheir funtionality and their generality. We introdue the HR program whihimplements a new model for theory formation. This model involves a yle ofmathematial ativity, whereby onepts are formed, onjetures about theonepts are made and attempts to settle the onjetures are undertaken.HR has seven general prodution rules for produing a new onept fromold ones and employs a heuristi searh by building new onepts from themost interesting old ones. To enable this, HR has various measures whihestimate the interestingness of a onept. During onept formation, HR usesempirial evidene to suggest onjetures and employs the Otter theoremprover to attempt to prove a given onjeture. If this fails, HR will invokethe MACE model generator to attempt to disprove the onjeture by �ndinga ounterexample. Information and new knowledge arising from the attemptto settle a onjeture is used to assess the onepts involved in the onjeture,whih fuels the heuristi searh and loses the yle.The main aim of the projet has been to develop our model of theoryformation and to implement this in HR. To desribe the projet, we �rst mo-tivate the problem of automated theory formation and survey the literaturein this area. We then disuss how HR invents onepts, makes and settlesonjetures and how it assesses the onepts and onjetures to failitate aheuristi searh. We present results to evaluate HR in terms of the quality ofthe theories it produes and the e�etiveness of its tehniques. A seondaryaim of the projet has been to apply HR to mathematial disovery and wedisuss how HR has suessfully invented new onepts and onjetures innumber theory.
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1. Introdution
1, 2, 8, 9, 12, 18, 24, 36, 40, 56, 60, 72, 80, 84, 88, 96, : : :A033950. Refatorable numbers { the number of divisors is itself a divisor.Mathematial theory formation involves, amongst other things, inventingonepts, performing alulations, making onjetures, proving theorems and�nding ounterexamples to false onjetures. Computer programs have beenwritten whih automate all of these ativities individually, but rarely haveprograms been implemented whih perform theory formation as a whole.We have written the HR system to perform theory formation in math-ematis. HR is named after mathematiians Godfrey Harold Hardy (1877{1947) and Srinivasa Aiyangar Ramanujan (1887{1920). Hardy had a remark-able grasp of number theory and ould pursue ompliated and prolongedtheoretial developments. On the other hand, Ramanujan explored the do-main by performing ompliated mental alulations and often �nding verysurprising patterns in the data [Hardy 27℄, [Hirshhorn 95℄. Hene our initialreason for the naming of HR reeted our wish for HR to pursue theoretialdevelopments and also to take a more hands on approah by �nding patternsin examples.We introdue the HR projet by �rst disussing the initial motivations,followed by a disussion of the merits of automated theory formation. Afterthis, we set down the aims of the projet, the ontributions this work makesto the state of the art and the organisation of the remainder of the book.1.1 MotivationOne way to gain an understanding of a omplex mathematial onept isto deompose the onept into those simpler ones upon whih it was based.For example, ring theory is the study of rings, whih are themselves groupswith an addition operation. Groups are themselves sets and so on. Drawinginformal diagrams relating ompliated onepts suh as Galois groups allthe way bak to sets an give a greater understanding than just reading theverbatim de�nition of these onepts. One of the appeals of mathematis is



2 1. Introdutionthat, with a ertain amount of e�ort, it is always possible to understand aonept in terms of simpler ones. Following the diagram forward, taking smallsteps to slightly more ompliated onepts enables a good understanding ofthe onepts being studied, and to a ertain extent de-mysti�es them.Using suh diagrams to progress from less omplex to more omplex on-epts gives an overview of how the theory ould have developed. At eah stage,one realises that ertain hoies have been taken to impose more strutureon the onepts. This raises the question of what onepts would have beenformed if other hoies were made in the onstrution. Following this, wemay question what the examples of the onepts would be, what onjetureswould arise as a result of their study, and whether a theory ould be builtaround the alternative onepts.Taking well known onepts and altering hoies taken in their onstru-tion often leads to uninspiring onepts. For instane, prime numbers arethose with exatly two divisors, e.g. 5 is prime beause it is divisible by 1and 5 only. If we look at a similar onept: numbers with exatly one divisor,we �nd only one example, the number 1, so the onept is very dull. Whilesome hoies lead to dead-ends, other hoies may lead to interesting new on-epts whih have yet to be developed properly. An advantage of omputerprograms is that they an tirelessly try large numbers of hoies reliably andquikly. Hene if we ould implement ways for a program to onstrut onemathematial onept from another, we ould automate the exploration of adomain.There are three important initial motivations for the projet to automateexploration of a mathematial domain. Firstly, while presenting a group the-ory leture at the University of Liverpool, John Humphreys stated that:The �rst things mathematiians look at one they have de�ned atype of objet are the di�erent types of subobjet. Following that,they will look at maps between one objet and another.This suggested that there was some methodology behind theory formation,whih in turn suggested using a omputer to follow that methodology. Inpartiular, we started a projet to lassify the di�erent kinds of onstrutionavailable when building onepts.Douglas Lenat's PhD thesis [Lenat 76℄, as disussed in Chapter 2, pro-vided a seond motivation for this projet. Lenat wrote the AM programwhih invented de�nitions and made onjetures in number theory, and Lenatwon awards for this work. Therefore, it was very surprising to �nd that noontemporary version of AM was available to down-load, run sessions withand improve upon. While reonstruting1 AM was not a motivation for thisprojet, writing a ontemporary program able to perform theory formationby exploration has motivated this work throughout.1 In x2.2.1, we disuss the DC program [Morales 85℄ and Cyrano program[Haase 86a℄ where reonstruting aspets of AM was an aim.



1.2 Aims of the Projet 3Finally, reading about the initial motivations for Arti�ial Intelligene,one soon omes aross some 1958 preditions [Simon & Newell 58℄ of whatwe ould expet a omputer to ahieve in the next ten years. As well asprediting that a omputer would be world hess hampion, they also stated:That within ten years a digital omputer will disover and prove animportant mathematial theorem.It seemed that a program whih both made onjetures and attempted toprove them was undertaking some aspets of theory formation. It also seemedthat to make a onjeture of some importane may involve the invention ofnew onepts, rather than the statement of a fat relating old onepts.Having desribed the pre-history of this projet, we an provide some ob-jetive motivations for automated theory formation in mathematis. Firstly,to provide and implement a model of automated theory formation in math-ematis is an important and diÆult problem whih should be studied in itsown right. Seondly, theory formation an lead to mathematial disovery,either by the invention of important new onepts, the making of interestingonjetures or the proving of new theorems. Proving theorems automatiallyis a very diÆult problem whih has been attempted for many years by au-tomated theorem provers. While we do employ automated theorem provingtehniques during theory formation, it is beyond the sope of this book toapply HR to theorem proving { where a onjeture is supplied as input anda proof is sought. However, the hope of inventing new onepts and makingnew onjetures has been a motivating fore for this projet from the verybeginning.Thirdly, as mathematis plays a part in every other siene, if theoryformation ould be implemented in suh a way that it exhibited a generalreasoning ability, rather than knowledge of partiular domains, there is muhsope for appliation of this ability to siene. Finally, it beame lear towardsthe end of the projet that theory formation ould possibly apply to otherareas of Arti�ial Intelligene, inluding theorem proving, mahine learningand onstraint satisfation, as disussed in Chapter 14.1.2 Aims of the ProjetWe aimed to design, implement and evaluate a system whih performs theoryformation in mathematial domains using a range of abilities. These abilitieswere to inlude inventing onepts, performing alulations, making onje-tures, proving theorems and disproving non-theorems.



4 1. IntrodutionWe wanted to do this in suh a way that:� The model worked in a range of mathematial domains, i.e. we wanted toavoid dependene on any aspet of a partiular domain, inluding partiularrepresentations of mathematial onepts.� The system ould start with minimal information from a domain, for ex-ample, the axioms of a �nite algebrai system.� The arhiteture of the system was modular and extendible, allowing theaddition of more ways to invent onepts, more ways to prove or disprovetheorems, et.It was not the aim of this projet to study how mathematiians form theo-ries. While this is a worthy area of study in ognitive siene and the philoso-phy of siene, there is no ompelling reason why a omputer program shouldform theories as humans do. One of the most powerful automated theoremproving tehniques is resolution [Robinson 65℄ whih applies a single dedu-tion rule to the negation of a theorem until a ontradition is found. Whileproof by ontradition is ommon in mathematis, very few mathematiiansuse proof by resolution as a tool for theorem proving. Also, mathematiiansoften leave little trae of how they proved a theorem, with a few notableexeptions [P�olya 88℄, and the same is true of how they invent onepts andmake onjetures. To implement a model of human theory formation wouldtherefore involve studying mathematiians at work, whih was not our aim.Our researh overlaps with and utilises notions from other areas of Ar-ti�ial Intelligene, in partiular mahine learning and automated theoremproving. It is important to note, however, that these areas omprise a largebody of work, and the possible appliation of theory formation to these areashas only been realised reently. Therefore, we do not aim to evaluate howtheory formation ould apply to other areas of Arti�ial Intelligene, and wedisuss this only in Chapter 14, Further Work. Also, it has not been our aimto implement a system whih ould form theories in sienti� domains otherthan mathematis, although we disuss alterations to HR whih may enableit to work in other sienti� domains in Chapter 14.As the invention of new onepts and onjetures has been a motivationthroughout this projet, we have applied HR to ertain disovery tasks. Inpartiular, we have used HR to invent interesting integer sequenes missingfrom the Enylopedia of Integer Sequenes [Sloane 00℄, whih ontains over60,000 sequenes. However, the appliation of HR to disovery is only a se-ondary aim of this projet, and we have not fully investigated the potentialof theory formation for this task. HR has invented 20 integer sequenes whihhave been aepted into the Enylopedia and we present a di�erent one atthe start of every hapter and appendix of the book.



1.4 Organisation of the Book 51.3 ContributionsMathematial theory formation is not a well developed area of Arti�ial In-telligene. While there are many programs whih perform a partiular math-ematial ativity suh as theorem proving, there are only a handful whihperform theory formation as a whole. In assessing the ontribution made bythis projet to automated mathematial theory formation, we note that HRimproves on eah previous system in di�erent ways. In partiular:� HR has more funtionality than the other programs. It is the �rst to performonept formation, onjeture making, theorem proving and ounterexample�nding, and is the �rst to interfae with a third party theorem prover andmodel generator to do this.� The arhiteture used to ahieve theory formation is muh simpler than inother programs, requiring less bakground knowledge and using onsiderablyfewer onept onstrution tehniques and heuristi measures.� HR is the �rst to employ a yle of mathematial ativity whereby, amongstother things, information from proof attempts is used to better assess theonepts, thus improving onept formation.� HR has been suessfully applied to di�erent domains. These inlude many�nite algebrai systems suh as group theory and ring theory, as well asnumber theory and graph theory. All previous theory formation programshave worked mainly in a single domain.In addition to adding to automated mathematial theory formation, HRhas ontributed to mathematis. Some theorems about integer sequenesinvented and investigated by HR have appeared in a mathematis journal[Colton 99℄ and we present these results in Appendix C. Our �nal ontribu-tion is in ollating and explaining some of the many di�erent ways in whiha theory formation program an be assessed.1.4 Organisation of the BookChapters 1 to 4 prepare the ground for disussion of the HR program:� Chapter 1: Introdution.We present an overview of the projet by desribing the motivations, aimsand ontributions of the projet.



6 1. Introdution� Chapter 2: Literature Survey.We report on topis related to our work, in partiular previous programswhih have performed mathematial theory formation. We briey over thetopis of representation of mathematial onepts, automated theorem prov-ing and mahine learning.� Chapter 3: Mathematial Theories.We briey desribe some important aspets of group theory, graph theoryand number theory. We use this survey to derive an impression of the natureof mathematial theories, inluding what they ontain and the reasons theyare formed.� Chapter 4: Design Considerations.We disuss whih aspets of theory formation HR will and will not over, andthe design deisions taken to implement its funtionality.Having desribed what we wish HR to do, we look at how it onstruts atheory:� Chapter 5: Bakground Knowledge.We desribe what information must be supplied by the user in order for HRto begin theory formation.� Chapter 6: Inventing Conepts.We present the seven prodution rules HR uses to turn old onepts into newones. This inludes details of when the rules are appliable and how theyprodue new onepts. We give some example onstrutions to illustrate thekinds of onepts HR forms.� Chapter 7: Making Conjetures.We disuss four ways in whih HR an make onjetures using empirialevidene. We also present some onjeture making tehniques whih involvedata mining the Enylopedia of Integer Sequenes.� Chapter 8: Settling Conjetures.We desribe how HR interfaes with a theorem prover and model generatorto prove and disprove theorems respetively. We also disuss how HR anindependently prove theorems by showing that they follow as orollaries toprevious results.Having disussed how a theory is onstruted, we desribe how to ontrolthis proess:� Chapter 9: Assessing Conepts.We disuss the heuristi searh HR performs to inrease the yield of inter-esting onepts. We desribe how HR uses a number of measures of interest-ingness to gain an overall evaluation of its onepts.



1.4 Organisation of the Book 7� Chapter 10: Assessing Conjetures.One way to assess a onept is to determine the quality and quantity of theonjetures and theorems it is involved in. We desribe the way in whih HRassesses how surprising and diÆult a onjeture is.Having presented our model of automated theory formation, we evaluatethis approah:� Chapter 11: An Evaluation of HR's Theories.We provide summary statistis for HR's theories to evaluate the hypothesesthat the theories are interesting and that the heuristi measures an improvethe theories.� Chapter 12: The Appliation of HR to Mathematial Disovery.We present three projets where HR was used to disover fats about a do-main whih were new to us, and in some ases new to mathematis.� Chapter 13: Related Work.We ompare and ontrast HR with �ve theory formation programs and om-pare its onept formation tehniques with the Progol program.Finally, we disuss future diretions and draw onlusions from our study:� Chapter 14: Further Work.We look at three diretions in whih the projet ould be taken in future:additional theory formation abilities, the appliation to mathematis andareas of Arti�ial Intelligene, and theoretial explorations. We give briefdetails of other projets in whih HR has been involved.� Chapter 15: Conlusions.We onlude that our model does ahieve the aims we set out, and we lookat the lessons learned from this study.There are three appendies supplying additional details:� Appendix A: User Manual for HR.We provide instrutions for down-loading and running HR version 1.11.� Appendix B: Example Sessions.We provide details of sessions using HR in graph theory, group theory, semi-group theory and number theory.� Appendix C: Number Theory Results.We develop and prove the onjetures that HR made about the integer se-quenes it invented and investigated.



8 1. Introdution1.5 SummaryThe main aim of this projet is to design and implement a system whihan perform theory formation in domains of mathematis. Produing amathematial assistant has been a long term goal for Arti�ial Intelligene[Bundy 85℄, and to additionally motivate the projet, we note that mathe-matial theory formation an lead to mathematial disoveries and may applyto theory formation in other sienes. While we hope theory formation willeventually apply to other areas of Arti�ial Intelligene suh as theorem prov-ing and mahine learning, we only briey disuss the appliation of HR tothese areas. There are four main topis overed in the remainder of the book:1. Problems assoiated with automated theory formation [Chapters 2 to 3℄.2. Our model of theory formation [Chapters 4 to 10℄.3. An assessment of the HR program [Chapters 11 to 13℄.4. Future work and onlusions [Chapters 14 and 15℄.We hypothesise that theory formation an be automated in mathematis insuh a way that rih and interesting theories are produed from only themost fundamental onepts in a domain, and that this an be done in a wayappliable to more than one domain. We present the HR system in evideneof this hypothesis.



2. Literature Survey
2, 8, 12, 18, 24, 36, 40, 56, 60, 72, 80, 84, 88, 96, 104, 108, : : :A057265. Even refatorable numbers.Computer programs whih perform spei� mathematial tasks have our-ished sine the beginning of omputer siene. These tasks inlude:� Symboli manipulations, whih an be ahieved by omputer algebra sys-tems suh as Maple [Abell & Braselton 94℄, Mathematia [Wolfram 99℄ andGap [Gap 00℄.� Example onstrution, e.g. building Cayley tables, whih an be ahievedby model generators like MACE [MCune 94℄, Finder [Slaney 92℄ and Kimba[Konrad & Wolfram 99℄.� Inventing onepts, whih an be ahieved by mahine learning programssuh as Progol [Muggleton 95℄, RIPPER [Cohen 95℄ and C4.5 [Quinlan 93℄.� Making onjetures, whih an be ahieved with speialised tehniques suhas those employed by GraÆti [Fajtlowiz 88℄, the PSLQ algorithm [Bailey 98℄and the AGX program [Caporossi & Hansen 99℄.� Proving theorems, whih an be ahieved by a plethora of automated the-orem provers, inluding: Otter [MCune 90℄, �-Clam [Rihardson et al. 98℄,Spass [Weidenbah 99℄ and Vampire [Voronkov 95℄.On the whole, these programs are given fairly spei� tasks. For example,Mathematia may be used to ompute the zeroes of a partiular polynomial.MACE may be used to onstrut a group of, say, order 5. Progol may beasked to invent a de�nition for a given set of examples, e.g. given the integers2, 4, 6, 8 and 10 and asked to invent a property whih all these numbershave (being divisible by 2 is one answer in this ase). Otter may be given apartiular theorem, along with the axioms of the theory, and used to provethe theorem.We are interested in automating a less spei� task, that of exploring amathematial domain. For example, we might provide the set of axioms for a



10 2. Literature Survey�nite algebrai system suh as group theory and ask the program to produeexamples of groups, onepts about groups, open onjetures, theorems andproofs about groups. To begin our survey, in x2.1 we look at some philosophi-al issues in human mathematial theory formation. Programs whih performexploratory theory formation are rare, and we briey desribe four suh pro-grams in x2.2. Following this, in x2.3 we look at the BACON programs, whihperformed theory formation in the physial sienes.While we have used theorem provers and model generators, the individualmathematial tehniques developed in this book are onept formation andonjeture making. For this reason, in x2.5 we desribe three programs devel-oped by mathematiians to produe onjetures in graph theory and numbertheory. Mahine learning programs perform onept formation, but we an-not survey the whole of mahine learning as this is a large area. Instead,in x2.4 we look at some ways to represent mathematial onepts and fouson the use of Indutive Logi Programming (ILP) to invent onept de�ni-tions. It is not our aim to address spei� problems from omputer algebra,automated theorem proving or model generation, so we do not survey these�elds. However, our system will integrate with the Otter theorem prover andthe MACE model generator, so we give overviews of these programs in x2.6.Also, we rely on the Enylopedia of Integer Sequenes [Sloane 00℄ in ourappliation of HR to mathematial disovery and we disuss this in x2.7.2.1 Some Philosophial IssuesThree of many questions about human mathematial theory formation whihattrat interest in the philosophy of siene are: what onstitutes a theory,why they are formed and how they are put together.Most people agree on the ontent of a theory: onepts, examples, onje-tures, theorems, proofs, orollaries, lemmas and so on. In the terminology of[Selden & Selden 96℄, this is knowing that knowledge. However, mathematialknowledge also inorporates methods (knowing how knowledge) and, as dis-ussed in [Selden & Selden 96℄, John Mason extended this to inlude heuristiinformation (knowing to knowledge). George P�olya has perhaps been most in-strumental in identifying and teahing the methods and heuristis underlyingmathematial researh tehniques, in partiular problem solving [P�olya 54℄,[P�olya 81℄, [P�olya 88℄. Other authors have also studied mathematial prob-lem solving [MLeod & Adams 89℄, [Zeitz 99℄ as well as problem solving ingeneral [Simon & Newell 58℄, [Newell & Simon 72℄.There are also some rare oasions where a mathematiian has writtendown an explanation of the struggle whih led them to the solution of a parti-ular problem. For example, in [Buhanan 66℄, Buhanan points to Poinar�e'sremark in [Ghiselin 96℄ that:



2.1 Some Philosophial Issues 11For �fteen days I strove to prove that there ould not be any funtionslike those I have sine alled Fuhsian funtions. I was then veryignorant; every day I seated myself at my work table, stayed an houror two, tried a great number of ombinations and reahed no results...Unfortunately, it is very rare for the explanation to desribe what the failedombinations were. Rather, as Poinar�e does, the disussion is usually limitedto logistial details with mention of the �nal \sudden illumination" after thetime has been \�lled out with unonsious work". We should not be tooritial of Poinar�e { the results found by mathematiians are of muh greaterinterest to them than the proess whih led to the results, and the pereptionsof ashes of insight are genuine.There is also a debate about the notion of a proof. In most mainstreammathematis texts, the proofs supplied are informal and pathy and thereader is expeted to interpret the proof and �ll in many gaps. Philip Kitherin [Kither 83℄ goes further to argue that muh mathematial knowledge isnot based on rational proof, but rather on the authority of the mathemati-ian. Also, there is a debate on what an and annot be proved [Chaitin 98℄,but disussion of this is beyond the sope of the book.The question of why theories are formed is less ontroversial. Certainbranhes of mathematis were developed due to an external need. For ex-ample, Ernest points out that written arithmeti was developed to supporttaxation, trigonometry to help astronomy, mehanis to improve ballistisand statistis was originally developed for insurane purposes [Ernest 99℄.External fores still a�et the popularity of ertain areas of mathematis, forexample muh of omputational number theory developed due to the needfor ryptography to enhane omputer seurity. Areas of pure mathematisalso develop due to internal fores, for example the statement of a onjetureor the desire to lassify a set of objets whih have arisen elsewhere.Most debate involves the question of how a theory is put together. Workhas been done on sienti� theory formation in general, inluding work byPopper to impose a logi on sienti� disovery [Popper 72a℄, [Popper 72b℄and by Kuhn to identify how revolutions in sienti� theories progress[Kuhn 70℄. Buhanan gives a more pragmati approah by surveying di�er-ent possible logis for disovery [Buhanan 66℄. Also, Boden demysti�es someimportant sienti� disoveries suh as Kekul�e's disovery of the ring stru-ture in Benzene, as disussed in [Boden 92℄ and [Boden 94℄. In mathematis,there has been an e�ort to study how mathematiians put theories together[Meshowski 64℄, and studies of how partiular theories evolved [Wilder 68℄.In [Lakatos 76℄, Imre Lakatos studied the evolution of Euler's theoremabout polyhedra: given a regular polyhedra with V verties, E edges and Ffaes, then V �E+F = 2. Refutations to this result were found and Lakatosnotes how the onept of regular polyhedra was altered to exlude ertainases, so that the theorem still held for the restrited lass of polyhedra. Thisshows how a theory an evolve over time in the light of new disoveries.



12 2. Literature SurveyIn [Ernest 98℄ and [Ernest 99℄, Paul Ernest studies the debate betweenrealists and relativists in mathematis. He lasses mathematiians as either\absolutists", who:... laim that mathematis must be woven into the very fabri ofthe world, for sine it is a pure endeavour removed from everydayexperiene how else ould it desribe so perfetly the patterns foundin nature?or \fallabilists" who:... see mathematis as an inomplete and everlasting `work-in-progress'.It is orrigible, revisable, hanging, with new mathematial truthsbeing invented, or emerging as the by-produts of inventions, ratherthan disovered.Ernest points out that traditionally mathematiians have held the ab-solutist view, and most still do, as expressed for example in [Penrose 89℄.However, he notes that there is a growing number of mathematiians whoo�er arguments towards the fallabilists point of view. In partiular, he iden-ti�es Imre Lakatos as a fallabilist as he pointed out the evolution of the notionof a polyhedra as inomplete proofs and refutations of Euler's theorem werefound [Lakatos 76℄.Mathematis does not take plae in a vauum and researhers often high-light the soial nature of mathematial ativity [Furse 90℄, [Ernest 98℄. Theypoint out that mathematial theories evolve due to the endeavours of ommu-nities of mathematiians rather than the underlying logi of mathematis. In[Parshall 98℄, using the development of algebra as an example, Parshall makesan analogy of mathematial theory formation with the evolution of life forms.Parshall laims that natural seletion in the ommunity of mathematiianseventually weeds out weak onepts and subjet areas.A �nal question related to how theories are put together is the use ofexperimentation in mathematis. Some mathematiians are beginning to viewmathematis as an empirial siene, as emphasised by the formation of thejournal of experimental mathematis in 1992. Zeitz states in [Zeitz 99℄ that:It is a well kept seret that muh high-level mathematial researhis the result of low-teh `plug and hug' methods. The great CarlGauss, widely regarded as one of the greatest mathematiians in his-tory, was a big fan of this method. In one investigation, he painstak-ingly omputed the number of integer solutions to x2 + y2 � 90000[Hilbert & Cohn-Vossen 52℄. (p. 30)Computer algebra is taught in inreasingly many mathematis ourses, andomputation is beginning to play an important part in mathematial life.Some mathematiians atively enourage the use of alulation instead ofproofs, for example [Zeilberger 98℄, [Zeilberger 99℄.



2.2 Mathematial Theory Formation Programs 132.2 Mathematial Theory Formation ProgramsThe four programs disussed here were all designed to explore a domainrather than undertake a spei� task. This exploration involved at least theprodution of onepts and onjetures. They are presented in hronologialorder, and the level of detail here is limited, beause we present a moredetailed disussion of the programs in Chapter 13, when we ompare andontrast them with our program.2.2.1 The AM ProgramThe AM program written by Douglas Lenat performed onept formationand onjeture making in elementary set and number theory, as desribedin [Lenat 76℄ and [Lenat 82℄. Starting with 115 elementary onepts suhas sets and bags, AM would re-invent set theory onepts like subsets anddisjoint sets, and number theory onepts suh as prime numbers and highlyomposite numbers (integers with more divisors than any smaller integer).AM would also �nd some well known onjetures, suh as the fundamentaltheorem of arithmeti and Goldbah's onjeture (that every even numbergreater than 2 is the sum of two primes).AM started sessions with the 115 elementary onepts stored as frameswith faets for a de�nition, some examples, onjetures and so on. It exploredthe domain by repeatedly undertaking the task at the top of its agenda. Eahtask resulted in either a new onept being introdued, a onjeture abouta previous onept being found, the empirial heking of an old onjetureor the addition of more information to the faets of an old onept. To arryout eah task, AM hose a set of relevant heuristis from 242 possibilities.The heuristis were designed to failitate theory formation by suggesting newtasks or new onepts and by providing ways to measure the interestingness ofa task or onept. AM used a weighted sum of many alulations to estimatethe overall worth of a onept and this assessment was used in turn to orderthe tasks on the agenda. Alternatively, the user ould diret the searh bymaking AM fous on ertain onepts.There has been muh debate over the pros and ons of Lenat's work.Rithie and Hanna in [Rithie & Hanna 84℄ were partiularly ritial of themethods AM used and the auray of Lenat's desription of AM. Perhapsthe main ontribution of Lenat's work was to inspire an exploratory approahto mathematial theory formation. Lenat went on to develop the Euriskoprogram [Lenat 83℄ as he believed the reason AM stopped being produtiveafter a while was beause the heuristis beame less appliable. Eurisko wasable to generate new heuristis, but had limited suess and doesn't appearto have added muh to the understanding of automated mathematial theoryformation.AM inspired other projets. For example, the DC program extrated andextended the onjeture making aspets of AM [Morales 85℄. The Cyrano



14 2. Literature Surveyprograms by Kenneth Haase [Haase 86a℄ re-implemented aspets of Eurisko,whih led to the desription of suh systems as searh programs whih dynam-ially alter their searh spae. The ARE system by Weimin Shen [Shen 87℄greatly improved on the way AM built new funtions from old ones. Shen in-trodued funtional transformations, whih ould turn one or two funtionsinto another (e.g. by inverting a funtion, or by omposing two funtions).This lari�ed how onept formation ould be ahieved with funtions, andprodued a system with more abilities than AM. In partiular, ARE ouldre-invent the onepts of self-exponentiation (xx) and logarithms, whih AMould not do.2.2.2 The GT ProgramThe GT program, written by Susan Epstein, performed onept formation,onjeture making and theorem proving in graph theory, as desribed in[Epstein 87℄ and more fully in [Epstein 88℄ and [Epstein 91℄. GT formed theo-ries using both dedutive and indutive reasoning. This was possible beauseof the reursive representation of graph types whih Epstein developed in herPhD thesis [Epstein 83℄. The de�nitions desribed the base ases for typesof graphs and how to build a new graph from an old one. This overs manytypes of graph and enabled example generation, onjeture making, theoremproving and onept formation.The generation of examples for a onept was ahieved by what Epsteinalls \doodling" { GT applied the onstrution step to the base ases andrepeatedly to the resulting graphs to produe more examples for the on-ept. Conept formation was possible by speialising or generalising eitherthe base ases or onstrution step and by merging two onepts. Threetypes of onjeture were made using data as well as syntati evidene fromthe de�nitions of the onepts. In partiular, GT made onjetures that onegraph type subsumed another (i.e. all graphs of one type are also of anothertype), that two de�nitions were equivalent, and that there were no graphswith the properties of two onepts.Theorem proving was performed by using one of a small set of tehniquesto prove an observed property. An example given in [Epstein 87℄ is that thereare no graphs with an odd number of verties for whih all the verties havean odd degree. To prove this, GT showed that the base ase graph for graphswith an odd number of verties has a single node, and more examples aregenerated by adding two verties (hene they always have an odd numberof nodes). It then showed that the base ase for graphs with all odd degreeverties has two verties, and all further examples are generated by addingtwo verties (hene they always have an even number of nodes). This providedthe evidene that no graphs with both properties existed.As disussed more fully in x13.2.3, GT worked by arrying out one ofsix types of tasks, with onstraints on whih task to undertake �rst. GT re-



2.2 Mathematial Theory Formation Programs 15invented graph types, suh as ayli graphs, onneted graphs, stars andtrees, (as shown in Figure 2.1 below).
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TREEFigure 2.1 Graph properties re-invented by GTAlso, GT ould be given a set of user-de�ned onepts desribing graphproperties, and would make and prove onjetures suh as: a graph is a treeif and only if it is ayli and onneted. Epstein stated in [Epstein 91℄ that:GT's most signi�ant omission is ounterexamples; they are the pri-mary target in GT's urrent development.Unfortunately it appears that this funtionality was never added.2.2.3 The IL ProgramThe IL program, written by Mihael Sims, as desribed in [Sims & Bresina 89℄and more fully in [Sims 90℄, was designed to perform mahine learning tasks{ to invent a onept whih satis�ed various onditions spei�ed by the user.To do this, IL used theory formation tehniques, inluding onept formationto �nd a suitable onept and theorem proving to prove that the oneptperformed as required.IL was asked to produe operators on number types, for example a way ofmultiplying two omplex numbers together so that the multipliation formeda �eld over the omplex numbers with the standard addition (supplied by theuser). IL re-invented the standard operator for multipliation of two omplexnumbers: (a+ bi) � (+ di) = (a� bd) + (ad+ b)i;and also proved that the operator formed a �eld, as required.IL employed a generate, prune and prove method, whih (a) proposed aset of andidate operators to do the job (b) disarded any if they did notperform to the user's requirements on a small set of example numbers, and() attempted to prove that one of those left did indeed perform orretly.Sims identi�ed an important onept formation tehnique in mathemat-is, namely the synthesis of a new onept given spei� tasks for it andsome domain spei� bakground information, suh as examples and theo-rems. IL suessfully re-invented not only omplex multipliation, but alsothe multipliation of Conway numbers whih, as Conway mentions himself in[Conway 76℄, is far from straightforward.



16 2. Literature Survey2.2.4 The Bagai et al. ProgramThe program developed by Rajiv Bagai et al., desribed in [Bagai et al. 93℄,worked in plane geometry and aimed to �nd theorems stating that ertainidealised diagrams ould not be drawn. Eah onept was a situation (gen-eralised diagram) in plane geometry involving points and lines and relationsbetween the points and lines, suh as a point being on a line or two linesbeing parallel. For example, a parallelogram and its diagonals, as in Figure2.2 (taken from [Bagai et al. 93℄), ould be desribed by stating that therewere four ingredient points, A;B;C and D, six lines (one between eah pairof distint points) and two relations, namely that lines AB and CD wereparallel and that lines AC and BD were parallel.
C

B

D

A point(A), point(B), point(C), point(D),line(A, B), line(A, C), line (A, D),line(B, C), line(B, D), line(C, D),parallel(line(A, B), line(C, D)),parallel(line(A, C), line(B, D))Figure 2.2 A parallelogram and diagonals, and its representation in Bagai et al'sprogramStarting with an empty situation (a blank diagram), onstrutions likethe parallelogram above were made by adding new ingredient points and newrelations. Eah time a new situation was onstruted by adding a relation,a onjeture was made that the situation was inonsistent, i.e. that it wasnot possible to draw an example of the diagram. An attempt was then madeto prove the onjeture using an eÆient theorem prover [Chou 84℄ basedon Wu's method [Wu 84℄. Proved onjetures were output as theorems andthe inonsistent situations were not built upon, as they would produe moreinonsistent situations, but the inonsisteny theorems would be orollariesof the original and hene less interesting. In x13.4, we disuss the methodswhih were employed to ut down on the use of the theorem prover.Not only ould the program re-disover well known results suh as Eulid's5th postulate, it also provided a lear and onise theory for the automatiprodution of plane geometry onepts and a set of theorems about the non-existene of examples for ertain onepts. Chou also used Wu's theoremproving method to provide a systemati way to generate and prove possiblynew results in geometry [Chou 85℄.



2.3 The BACON Programs 172.3 The BACON ProgramsThe series of BACON programs [Langley et al. 87℄ were named after thephilosopher and sientist Franis Baon (1561{1626). Baon advoated anempirial approah to sienti� disovery { looking at data produed fromexperiments, notiing a trend or pattern and making a hypothesis about thistrend, possibly returning later to provide an explanation of the hypothesis.The BACON programs automated the proess of hypothesising mathemati-al laws based on trends observed in experimental data. They worked withdata taken from 18th and 19th entury experiments in the physial sienes,and derived laws suh as Ohm's law.BACON worked by following simple rules governing what to do if it no-tied a trend in the data. For example, if it saw the experimental results forobservations X and Y as follows: X YExperiment 1 2 4Experiment 2 3 6Experiment 3 4 8it would �nd that as X inreases, Y inreases. Beause of this observation, itwould follow the heuristi of alulating values for X/Y:X Y X/YExperiment 1 2 4 0.5Experiment 2 3 6 0.5Experiment 3 4 8 0.5This would provide enough information to use its law making rule: if a value(either observed diretly, or alulated from observed values) is always on-stant, then state that this is always true. In our example, BACON would saythat X/Y = 0.5 is a law.BACON.3 used only a handful of similar simple rules. It also had ne-essary administrative routines, suh as identifying and ignoring irrelevantvariables, relating multiple experiments and ignoring di�erenes between sim-ilar values. It worked using a hierarhy of desriptive levels for the oneptsit produed, with the observations taken diretly from the experiment onthe lowest level, and the hypothesis itself on the top level. A onept wasput on a level one higher than the onepts whih were used to produeit, e.g. X/Y would be one level above X and Y in the example above. Us-ing this simple arhiteture, BACON.3 redisovered versions of the ideal gaslaw, Kepler's third law, Coulomb's law, Ohm's law and Gallileo's laws forthe pendulum and for onstant aeleration [Langley 79℄. BACON.4, as de-sribed in [Bradshaw et al. 80℄ and [Langley et al. 80b℄, addressed the prob-lem of disovering intrinsi properties, suh as the spei� heat apaity ofhemials, enabling it to re-disover Blak's law. BACON.5's improvements



18 2. Literature Surveyenabled it to �nd onsisteny laws, suh as the onservation of momentum[Langley et al. 80a℄.Eah version of BACON was based on a learly stated idea about empir-ial disovery and suessive versions had additional heuristis to help themdisover laws whih the previous version ouldn't. From BACON, Langley,Bradshaw et al. went on to produe the DALTON, GLAUBER, FAHREN-HEIT and STAHL programs, and their various suesses are presented in[Langley et al. 87℄. The authors of BACON stated that they were not tryingto model human disovery, rather to �nd a way of automating one aspetof sienti� disovery, whether this models human behaviour or not. Theyshowed that sienti� disovery an be automated and demonstrated a learmethodology leading to more re�ned theories about automated sienti� dis-overy. Further work on analysing how BACON worked and the developmentof a rigorous methodology for domain-independent sienti� funtion �ndingis given in [Sha�er 90℄.2.4 Conept Invention2.4.1 The Representation of Mathematial ConeptsIn [Kerber 91℄ and more fully in [Kerber 92℄, Manfred Kerber argues thata formal logial de�nition is not enough to fully desribe a mathematialonept. In evidene of this, he notes that new onepts are presented intextbooks with a de�nition, examples and often lemmas about some proper-ties of the onept. For instane, the onept of a group is often presentedwith a de�nition based on the axioms of group theory, some examples ofgroups, and some initial lemmas about groups, e.g. that the identity elementin every group is unique.Kerber proposes a frame representation for axioms, onepts and theoremsbased on the ideas of Minsky [Brahman & Levesque 85℄. The representationis similar in nature to that used by Lenat's AM, but formally de�ned using anextended Bakus-Naur form (EBNF). Informally, eah frame is omposed of aname to identify it, various slots to ontain information about aspets of theonept, and slot-�llers whih are piees of information about the onept.Eah frame an have di�erent slots, inluding ones for a formal de�nition,equivalent de�nitions, examples, parameters, superonepts (generalisations),subonepts (speialisations), and information about the ontext from whihthe onept omes.Kerber divides de�nitions of onepts into two types: simple and indutivede�nitions. Simple de�nitions an be used to identify examples whih �t thede�nition, but an only be used in a generate and test way to �nd examples.Indutive de�nitions start with a set of base ases and desribe the steprequired to produe new examples from old ones, for example de�ning evennumbers with the base ase 0 and adding two as the step ase. We note



2.4 Conept Invention 19that the AM program used simple de�nitions, whereas the GT program usedindutive de�nitions.Kerber disusses how to build up a knowledge base of axioms, oneptsand theorems in suh a way that the knowledge base is onsistent. To be on-sistent, the knowledge base must not entail both a formula and its negation.Kerber's objetive was to enable a human to build up a knowledge base whihould be used to prove theorems automatially. He gives no indiation as tohow a omputer program ould automatially build up suh a knowledge base.Other authors have written about the representation of mathematial on-epts, inluding onsiderations about the logial representation of oneptsfor automated reasoning [Boyer & Moore 79℄.2.4.2 Indutive Logi ProgrammingOne task whih mahine learning programs are set is to indue onepts fromexamples. To do this, the programs usually require bakground knowledge inthe form of initial onepts and a set of positive and negative examples.For instane, given bakground knowledge about trains (inluding the on-epts of arriage shapes, wheels, et.), a set of trains going East and a set oftrains going West, mahine learning programs an invent properties of trainswhih are shared by all of the eastbound trains but none of the westboundtrains [Mihalski & Larson 77℄. For example, the program might notie thatall eastbound trains have a square arriage, whereas westbound trains do not.Indutive Logi Programming (ILP) [Muggleton 91℄, is a general purposemahine learning tehnique. Conepts are represented as �rst order logi pro-grams, whih has many advantages, inluding that they an be interpretedby an underlying logi programming language. For example, the Progol pro-gram [Muggleton 95℄ has an underlying Prolog interpreter. The goal of ILPprograms is to produe a logi program whih desribes a set of given positiveexamples but not the given negative examples. The answers are based on thebakground prediates supplied by the user.As an example, Progol an learn the onept of square numbers, giventhe bakground knowledge and positive and negative examples in Figure 2.3.Progol produes this answer:square(A) :- multiply(A,B,B).This is a Prolog program whih, given a orret set of multipliation predi-ates (or a general one whih an orretly multiply any two integers), willidentify a square number as being the multipliation of a number with it-self. The mode delarations at the top of the input in Figure 2.3 determinethe format for the logi program to be learned, with + indiating the useof a known variable, - indiating the introdution of a new variable and #indiating possible instantiation. Progol searhes for onepts using the U-Learnability framework [Muggleton & Page 94℄. In this framework, there is a



20 2. Literature Surveyprior probability distribution over the spae of onepts, with the probabilitybeing the likelihood that the onept is the required one.% Mode Delarations:- modeh(1,square(+nat))?:- modeb(1,multiply(+nat,-nat,-nat))?% Bakground Knowledgemultiply(1,1,1).multiply(2,1,2).multiply(2,2,1).multiply(3,1,3).multiply(3,3,1).multiply(4,1,4).multiply(4,2,2).multiply(4,4,1).multiply(5,1,5).multiply(5,5,1).multiply(6,1,6).multiply(6,2,3).multiply(6,3,2).multiply(6,6,1).multiply(7,1,7).multiply(7,7,1).multiply(8,1,8).multiply(8,2,4).multiply(8,4,2).multiply(8,8,1).multiply(9,1,9).multiply(9,3,3).multiply(9,9,1).multiply(10,1,10).multiply(10,2,5).multiply(10,5,2).multiply(10,10,1).% Positive Examplessquare(1). square(4). square(9).% Negative Examples:- square(2). :- square(3). :- square(5).:- square(6). :- square(7). :- square(8). :- square(10).Figure 2.3 Input to Progol for learning the onept of square numbersThe onstrution of new onepts is ahieved by inverting dedutive rulesof inferene to produe indutive rules. One rule of dedution whih is in-verted is the resolution rule [Robinson 65℄. In its simplest form, this statesthat if we know: A! B and B ! Cthen we an infer that: A! CThe �rst two ways to invert resolution involve inverting a single resolutionstep. This involves asking the question: \given the observed lauses [logiprograms℄ in the data, whih two lauses ould have resolved together togive this observation?" In the following logi programming terminology usedin [Muggleton & De Raedt 94℄, lower ase letters are atoms and upper aseletters are onjuntions of atoms. Two indutive rules of inferene obtainedby inverting a single resolution step are absorption and identi�ation:



2.5 Conjeture Making Programs 21Absorption: q  A p A;Bq  A p q; BIdenti�ation: p A;B p A; qq  B p A; qThe absorption rule an be read as: \Given that I observe q  A andp  A;B, one hypothesis I an make is that this is beause q  A andp  q; B are true and have been resolved to produe the observations." Byinterpreting this hypothesis as a logi program, its feasibility an be hekedagainst the data.The seond two indution rules are derived from inverting two resolutionsteps: Intra-Constrution: p A;B p A;Cq  B p A; q q  CInter-Constrution: p A;B q  A;Cp r; B r  A q  r; CIn the ase of intra-onstrution, the hypothesis produed states thatlauses q  B and p A; q are true and were resolved to give the observedp  A;B and lauses p  A; q and q  C were resolved to give p  A;C.We note that a new prediate symbol, q has been introdued, and likewise theprediate r is introdued in the inter-onstrution rule. This phenomena isalled prediate invention and is often neessary to enable ILP programsto learn the orret de�nition for a onept. For example, when onstruting alogi program for \insertion sort", intra-onstrution is required to introduean \insert" prediate [Muggleton & De Raedt 94℄.ILP has been applied to many areas of sienti� disovery, inluding drugdesign, protein shape predition, satellite diagnosis and rheumatology. How-ever, we are unaware of any appliation of ILP to learning mathematialonepts, other than some illustrative examples, suh as addition. A qualita-tive omparison of our HR program with Progol is given in Chapter 13.2.5 Conjeture Making ProgramsThere are some speialised and often omplex algorithms and programs de-veloped not to output the result of a alulation, but rather a onjeture ortheorem. We disuss three suh approahes here, with more detail given inChapter 13 when we ompare these tehniques with those of HR.2.5.1 The GraÆti ProgramThe GraÆti program, written by Siemion Fajtlowiz, makes onjetures of anumerial nature in graph theory, as desribed in [Fajtlowiz 88℄, and more



22 2. Literature Surveyreently in [Larson 99℄. Given a set of well known, interesting graph theoryinvariants, suh as the diameter, independene number, rank and hromatinumber, GraÆti uses a database of graphs to empirially hek whether onesum of invariants is less than another sum of invariants. If a onjeture passesthe empirial test and Fajtlowiz annot prove it easily, it is reorded in the\writing on the wall", some of whih is publily available [Fajtlowiz 99℄ andFajtlowiz forwards it to interested graph theorists.As an example, onjeture 18 in the \writing on the wall" states that, forany graph G:hromati number(G) maximum degree(G)+ � +radius(G) frequeny of maximum degree(G)This was passed to some graph theorists, one of whom found a ounterexam-ple. These types of onjeture are of substantial interest to graph theoristsbeause they are easy to understand, yet they often provide a signi�anthallenge to resolve. The onjetures are also useful beause alulating in-variants is often expensive and bounds on invariants may bring omputationtime down.GraÆti was not implemented to model theory formation in a generalway, but rather as a tool for onstruting interesting onjetures in graphtheory. As disussed in Chapter 13, it employs two heuristis to prune itsonjetures. In terms of adding to mathematis, GraÆti has been extremelysuessful. The onjetures it has produed have attrated the attention ofsores of mathematiians, inluding many luminaries from the world of graphtheory. There are over 60 graph theory papers published whih investigateGraÆti's onjetures. While GraÆti owes some of its suess to the fat thatthe inequality onjetures it makes are of a diÆult and important type, thisshould not detrat from the simpliity and appliability of the methods andheuristis it uses.2.5.2 The AutoGraphiX ProgramCaporossi and Hansen have reently implemented an algorithm whih �ndslinear relations between variables in polynomial time [Caporossi & Hansen 99℄.Using data from the physial sienes, the algorithm has been used to repeatsome results of the BACON programs, in partiular by re-disovering Kepler'sthird law, the ideal gas law and Ohm's law. The algorithm has also been em-bedded in the AutoGraphiX (AGX) program [Caporossi & Hansen 97℄. AGXis an interative program used to �nd extremal graphs for graph invariants.Amongst other things, AGX has been employed to refute three onjeturesof GraÆti.With the new algorithm, AGX has been applied to automati onjeturemaking in graph theory. Given a set of graph theory invariants alulatedfor a database of graphs in AGX, the algorithm is used to �nd a basis of



2.5 Conjeture Making Programs 23aÆne relations on those invariants. For example, AGX was provided with 15invariants alulated for a speial lass of graphs alled olour-onstrainedtrees. The invariants1 inluded:� = the stability numberD = the diameterm = the number of edgesn1 = the number of pending vertiesr = the radiusThe algorithm disovered the following new linear relation between the in-variants: 2��m� n1 + 2r �D = 0whih Caporossi et al. have subsequently proved for all olour-onstrainedtrees.2.5.3 The PSLQ AlgorithmThe PSLQ algorithm as desribed in [Bailey 98℄, is able to eÆiently suggestnew mathematial identities of the form:a1x1 + a2x2 + : : :+ anxn = 0by �nding non-trivial oeÆients ai if supplied with real numbers x1 to xn.One appliation of the algorithm is to �nd whether a given real number,�, is algebrai. To do this, the values �; �2; : : : ; �n are alulated to highpreision and the PSLQ algorithm then searhes for non trivial values aisuh that: a1�+ a2�2 : : :+ an�n = 0The algorithm has suessfully disovered some new Euler sums, in par-tiular a remarkable new formula for �:� = 1Xi=0 116i � 48i+ 1 � 28i+ 4 � 18i+ 5 � 18i+ 6�Note that the formula was atually disovered by hand and the numbersfound by omputation. This formula is interesting as it an be used to alu-late the nth hexadeimal digit of � without alulating the �rst n� 1 digits,as disussed in [Bailey et al. 97℄. Until this disovery, it was assumed that�nding the nth digit of � was not signi�antly less expensive than �nding the�rst n� 1 digits. The new algorithm an alulate the millionth hexadeimaldigit of � in less than two minutes on a personal omputer.1 For an explanation of these invariants, see [Caporossi & Hansen 99℄.



24 2. Literature Survey2.6 The Otter and MACE ProgramsOtter is a state of the art �rst order resolution theorem prover [MCune 90℄.Starting with a set of lauses, the onjuntion of whih onstitute the negationof the theorem statement, Otter uses rules of dedution suh as paramodu-lation and resolution to infer new lauses. In theorem proving, we write theresolution rule as follows::A1 _ B A2 _ C(B _ C)�where � is the most general uni�er of A1 and A2, i.e. A1� � A2�.Note that this is the binary resolution rule. For details of deriving the fullresolution rule from this, see [Bundy 83℄. Robinson proved that this rule isomplete: it is the only rule of inferene that is neessary to �nd proofs to allorret theorems stated in �rst order logi [Robinson 65℄.Resolution works by repeated appliation of the resolution rule until anempty lause is derived. This empty lause represents a false statement de-rived from the axioms and the negation of the theorem statement. Therefore,to prove theorems using this rule, the negation of the theorem must be pre-sented to Otter along with the axioms of the theory. If Otter an generatethe empty lause, this means that the negation of the theorem is false, henethe theorem is true. For example, in group theory, to prove the theorem:a � a = a () a = id, we give the three axioms of �nite group theory, alongwith the negation of the theorem:all a b  (a * (b * ) = (a * b) * ).all b (a * id = b & b * a = b ).all a (inv(a) * a = id & a * inv(a) = id).-(all a (a * a = a <-> a = id)).Otter proves this onjeture in a fration of a seond, and outputs aproof objet and a proof length statisti. There are many settings that anbe adjusted to enable Otter to perform better in di�erent domains. For ourpurposes, we use Otter as a blak box program with its default settings. Theonly parameters we hange are the time it is allowed to run and the memoryit is allowed to use, as disussed in x8.2.A variant of Otter alled EQP has been famously used to prove the Rob-bins onjeture [MCune 97℄. Otter has been used in many di�erent mathe-matial domains, e.g. in [MCune & Padmanabhan 96℄, equational logi andubi urves are explored. Furthermore, Otter has been used for disoverytasks, in partiular �nding single axioms for group theory and other alge-brai systems [MCune 92℄, [MCune 93℄, [Padmanabhan & MCune 95℄.MACE [MCune 94℄ is the sister program to Otter. MACE is designedto generate models as ounterexamples to false onjetures. MACE takesthe same input as Otter, whih is an appeal of using these two programsin onjuntion. MACE employs the Davis-Putnam method for generating



2.7 The Enylopedia of Integer Sequenes 25solutions to satis�ability problems [Davis & Putnam 60℄, [Yugami 95℄. Thisinvolves searhing for an assignment of variables whih satis�es all lausesin a formula expressed in onjuntive normal form. The proedure uses unitpropagation to improve performane. This method hooses a variable in aunit lause (a lause ontaining a single literal) and assigns a value whihsatis�es the lause.To demonstrate the usage of MACE, the onjeture that all groups areAbelian is supplied in the same format as for Otter, as follows:all a b  (a * (b * ) = (a * b) * ).all b (a * id = b & b * a = b).all a (inv(a) * a = id & a * inv(a) = id).-(all a b  (a * b =  -> b * a = )).We must also speify the size of the example we want. In this ase, as allgroups up to size �ve are Abelian, we speify that we want a ounterexampleof Order 6 in the ommand line when alling MACE. MACE replies in lessthan a seond with a orret ounterexample to our non-theorem:� 0 1 2 3 4 50 0 1 2 3 4 51 1 0 3 2 5 42 2 4 0 5 1 33 3 5 1 4 0 24 4 2 5 0 3 15 5 3 4 1 2 0This group is non-Abelian thus disproving the onjeture that all groupsare Abelian. MACE has been used to solve some quasigroup existene prob-lems by disovering quasigroups whih were not previously known to exist[MCune 94℄ (see also [Slaney 94℄).2.7 The Enylopedia of Integer SequenesThe Enylopedia of Integer Sequenes is an online database of over 60,000sequenes (at the time of writing) whih have been olleted over the past36 years by Neil Sloane, with ontributions from many mathematiians[Sloane 00℄. 5487 sequenes were hosen by Sloane and Plou�e to appearin the book [Sloane & Plou�e 95℄. The online version is extremely popular,reeiving over 16,000 queries every day. It is primarily used as a researh tool,whereby the user tries to identify a sequene they have derived by lookingup sequenes. This is done with the terms of the sequene, rather than anyinformation about the de�nition or name of the sequene, although there isa growing index and a word-searh mehanism.Eah sequene is assigned a unique \A"-number and has at least a def-inition and the �rst numbers in the sequene. Often, further information is



26 2. Literature Surveyprovided suh as keywords whih desribe the sequene, and sometimes theA-numbers of related sequenes. Also, a omputer algebra program to alu-late the sequene is sometimes provided. For example, prime numbers havethe following entry in the Enylopedia:%I A000040 M0652 N0241%S A000040 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,%T A000040 71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,%U A000040 149,151,157,163,167,173,179,181,191,193,197,199,211,223,%V A000040 227,229,233,239,241,251,257,263,269,271%N A000040 The prime numbers.%D A000040 D. N. Lehmer, "List of Prime Numbers from 1 to10,006,721", Carnegie Institute, Washington, D.C. 1909.%D A000040 M. Abramowitz and I. A. Stegun, eds., Handbook ofMathematial Funtions, National Bureau of StandardsApplied Math. Series 55, 1964 (and various reprintings),p. 870.%D A000040 T. M. Apostol, Introdution to Analyti Number Theory,Springer-Verlag, 1976, page 2.%D A000040 Bateman and Diamond, A hundred years of prime numbers,Amer. Math. Monthly vol. 103 1996 pp. 729-741.%H A000040 Index entries for "ore" sequenes%H A000040 The prime pages%H A000040 First 10000 primes%H A000040 Aesthetis of the Prime Sequene%p A000040 A000040:=n->ithprime(n); [ seq(ithprime(i),i=1..100) ℄;%Y A000040 Cf. A000027, A018252, A002808, A008578.%K A000040 ore,nonn,nie,easy%O A000040 1,1%A A000040 njasWe note that as well as giving the �rst terms of the sequene, a de�nition,multiple referenes and a Maple program for the sequene, are also supplied.This sequene is desribed with the keywords \ore" (it is a fundamentalsequene), \nonn" (it is non-negative), \nie" (it has some appealing proper-ties) and \easy" (it is easy to understand). Also, some related sequenes arementioned after the Cf. marker.New sequenes are allowed into the Enylopedia if they are (i) in�niteand (ii) interesting, although there are exeptions to these rules and there isurrently a debate over whih sequenes should be allowed into the Enylope-dia. Use of the Enylopedia has led to the formation of novel onjetures. Forexample, sequene A031363 arose in the ontext of a quantization problembut the entry in the Enylopedia involved three-dimensional quasi-rystals[Sloane 98℄. This oinidene helped with the solution of the quantizationproblem. Similar oinidenes are reported in [Sloane & Plou�e 95℄.The aim of the SeekWhene program was to extrapolate a given sequeneof integers as the Enylopedia an [Hofstadter 95℄, [Ekstrom-Meredith 87℄.However, instead of using a large database, SeekWhene used heuristis todetermine the nature of a sequene, suh as taking the di�erene betweentwo terms, or trying to extrat and identify well known sub-sequenes. For



2.8 Summary 27example, given the sequene 1; 1; 3; 4; 6; 9, SeekWhene would identify thatsquare numbers: 1; 4; 9; and triangle numbers: 1; 3; 6; had been omposed withrepetition to form this sequene. Hofstadter aimed to model how humanssearh for de�nitions of sequenes, rather than to provide a tool to identifysequenes. The Guess program [Krattenthaler 91℄ is suh a tool whih usestehniques from determinant alulus to produe a losed form de�nition fora given sequene.2.8 SummaryThe �rst tasks omputers were set were mathematial alulations and theprojet to automate mathematis has ontinued ever sine. There are nowautomated approahes whih over a wide range of mathematial ativities,and tehniques for spei� mathematial tasks have been designed and im-plemented to muh suess. These have added to mathematis by performinglarger alulations (omputer algebra systems), proving theorems (automatedtheorem provers), making onjetures and introduing onepts (onjetureforming programs) and disproving non-theorems (model generators). How-ever, there have been relatively few attempts to link these individual teh-niques together to model how a mathematial theory is developed. We havelooked briey at four suh programs, and in Chapter 13 we shall analysethese programs further when omparing them to our system.We an desribe some of the major inuenes on our work with refer-ene to projets and ideas disussed in this hapter. Our study of some ofthe philosophial issues in mathematial theory formation has allowed us toidentify some questions to ask before implementing HR: what onstitutes atheory, why theories are formed and how they are put together. We addressthese questions in the next hapter.Lenat's early work on theory formation has motivated our exploratoryapproah to theory formation using a heuristi searh. AM also showed usthat systems to model theory formation are possible and worthy of study.We have also taken heed of the ritiisms of AM, in partiular by designinga simpler system involving fewer heuristis and requiring fewer initial on-epts. We have also implemented a more powerful system than AM by addingadditional funtionality, in partiular an ability to prove or disprove onje-tures whih arise. We have also drawn from the GT program. In our opinion,this program provided the most omplete model of theory formation as itinvolved onept formation, alulation of examples, onjeture making andtheorem proving. We also owe a great deal to William MCune who wrotethe Otter and MACE programs, as these play an integral part in how HRforms theories.A seondary aim of the HR projet is to apply theory formation to dis-overy tasks. Hene we have studied how GraÆti uses a knowledge rih envi-ronment to produe simple but diÆult and useful onjetures. We have also



28 2. Literature Surveybene�ted greatly from the Enylopedia of Integer Sequenes whih we haveused for making disoveries.The methodology behind HR has been inuened by the BACON pro-grams, where drawbaks of the previous versions are learly identi�ed andoverome in the new versions. Langley et al. stated that while the methodsthey implemented were plausible models for how the original disoveries weremade, they did not laim to apture human reasoning. Hene they showedthat omputers an emulate theory formation without neessarily using hu-man methods. We followed this methodology by learly stating the motivationbehind ertain design deisions before and after implementing them. Thesedesign deisions were not neessarily based on how humans form theories.Finally, we an draw from philosophy to appreiate that for this projet weare going to supply the knowing how methods and the knowing to heuristisin the hope that HR will reiproate with new and interesting knowing thatknowledge.



3. Mathematial Theories
1, 9, 225, 441, 625, 1089, 1521, 2025, 2601, 3249, 4761, 5625, : : :A036896. Odd refatorable numbers.It is not the purpose of this projet to automate how humans reate a math-ematial theory, but rather to propose and implement a model by whihtheories an be formed by omputer. While we do not expliitly study hu-man tehniques, we an study the theories they produe. In this hapter weanalyse some theories from pure mathematis and draw some general onlu-sions about their nature. This restrition to pure mathematis simpli�es thedisussion, beause no mention of the appliation of the theory is required.We �rst briey look at three domains of pure mathematis, namely grouptheory, graph theory and number theory. We do this for two reasons. Firstly,it gives some indiation of the nature of a mathematial theory. Seondly,examples from these theories will be used throughout this book and we needto be familiar with some of the notions involved. Following this, in x3.2 welook at the domains whih are investigated in general in mathematis. To dothis, we disuss reasons why partiular theories were formed and look at thedi�erene between �nite and in�nite domains. We then look at the ontentof a typial mathematial theory, paying partiular attention to onepts,onjetures, theorems and proofs, whih form the majority of any theory.3.1 Group Theory, Graph Theory and Number TheoryGroup theory, graph theory and number theory are three very important do-mains of pure mathematis. These domains have been extensively developedover many years and we an present only a small fration of the results here.We explain ertain notions in eah domain whih will be referred to in laterhapters. This survey will also enable us to determine some ommonalities be-tween these domains. In addition, we also look at the notion of isomorphism,a ommon thread in these domains and of importane to our projet.



30 3. Mathematial Theories3.1.1 Group TheoryFinite algebrai systems suh as groups determine ways to take a pair ofelements, a and b, from a �nite set, and assign a third element, usually writtena � b, to the pair. The assignment is alled multiplying a and b, with a � balled the produt of a and b. Algebrai systems are often presented withmultipliation tables where the produt of the elements appear in the body ofthe table. Eah algebrai system has a di�erent set of onstraints, or axioms,whih the multipliation must satisfy. For example, in quasigroup theory, theaxioms state that eah element should appear in every row and every olumnof the multipliation table.In �nite group theory, the multipliation in a group G is onstrained bythree axioms:� Assoiativity: 8 a; b;  2 G (a � b) �  = a � (b � ):� Identity: 9 id 2 G;8 a 2 G a � id = id � a = a.� Inverse: 8 a 2 G; 9 b 2 G a � b = b � a = id, (id is the identity element).In groups therefore, there is always an identity element, id, whih leaves eahelement unhanged under multipliation. Also, for every element a, there isan inverse element, usually written a�1, whih left and right multiplies with ato give the identity. Figure 3.1 shows the multipliation tables for two groupswith four elements and we see that element a is the identity element in eah.aa b  db  d a d a bd a b abd a b  d abbd da bad d db  dba abFigure 3.1 Multipliation tables for two groups of order 4Note that the group with only one element is alled the trivial group.Elementary group theory onepts inlude the order (or size) of the group,whih is the number of elements. Also, relations between two elements, areommon, e.g. ommutativity, where two elements a and b ommute if a�b =b�a. The order of an element, x, is the smallest integer n suh that xn = id,where xn is de�ned as the element obtained after multiplying n opies of xtogether. Other elementary onepts inlude types of group, for example, ifall pairs of elements in a group ommute then the group is alled Abelian.A group is alled yli if it has an element with an order the same as thesize of the group. It is easy to prove that yli groups are Abelian.Subgroups are subsets of elements whih also form a group. Subgrouponstrutions are ommon, for example, taking the set of elements whih



3.1 Group Theory, Graph Theory and Number Theory 31ommute with all the other elements gives a subgroup known as the entreof the group. Given any subset of elements S = fs1; : : : ; skg of a group G,we an form a left oset of S by multiplying all the elements of S by, say,element x. i.e. the left oset of S by x is written:xS = fx � s : s 2 SgGiven a subgroup,H , ofG, it is known that the identity element ofGmustbe in H . Given two left osets, L1 and L2 of G, we an take a representativeelement from eah, l1 and l2, and write L1 = l1S and L2 = l2S. This notationis used to de�ne a multipliation, written �, over the set of left osets in thefollowing manner: l1S�l2S = (l1�l2)S, where � is the multipliation operationfrom G. Under ertain irumstanes, this multipliation forms a group itselfover the set of left osets.A very important funtion ating on two elements, a and b is onjugation.The output of the funtion is a third element, namely b � a � b�1. We allthis the onjugation of a by b. If we take a partiular set of elements S =fs1; : : : ; skg and onjugate by a partiular element, say x, we get a new setof elements: xSx�1 = fx � s � x�1 : s 2 SgWe say that S is invariant under onjugation by x if xSx�1 = S. Any set Swhih is invariant under onjugation by any element of G forms a subgroupof G. These subgroups are very important in group theory, and are allednormal subgroups. One property of normal subgroups is that they providethe neessary and suÆient onditions for the set of left osets to form agroup. In this ase, we all the group of left osets a quotient group andwrite it as G=S.Whenever a funtion an be de�ned taking groups to groups, we allthis a mapping. Suh a mapping taking two groups to a third is the diretprodut. The diret produt of groups A and B is written A�B and onsistsof the set of elements: fha; bi : a 2 A and b 2 BgWith multipliation, �, de�ned by:ha1; b1i � ha2; b2i = ha1 � a2; b1 � b2i;the diret produt forms a group itself.If we iterate a mapping, we an produe a series of groups. For example,if we take the entre of a group, this gives us a new group. However, this isguaranteed to be Abelian, so performing the map again will lead to the samegroup. A more interesting map is to form the derived subgroup of a group,whih is de�ned to be the subgroup generated by the set of ommutators,namely the subgroup generated by the set:



32 3. Mathematial Theoriesfa�1 � b�1 � a � b : a 2 G and b 2 GgThe map taking a group to its derived subgroup an be used to produe aseries of groups, known as the derived series. Given a group G, we denotethe derived group G1, the derived group of G1 is G2 and so on, and thus thederived series is: G �! G1 �! G2 �! : : : �! GkIf this series ends with the trivial group, we say that G is soluble.3.1.2 Graph TheoryGraph theory was �rst studied in earnest by Leonhard Euler (1707-1783)in onnetion with the bridges of K�onigsberg problem, see [Euler 36℄ and[Trudeau 76℄. A simple graph is a set of nodes joined by undireted edges,as in Figure 3.2. Direted graphs, where the edges are direted by an arrowfrom one node to another are also studied.vvv vv.llCvvvv,,llBvv v vvv vvv�� TT AA��� TTTA DFigure 3.2 Four simple graphsIn elementary graph theory, two nodes are adjaent if onneted by anedge, and the degree of a node is the number of edges onneted to the node.Subgraphs are a subset of nodes and edges taken from a parent graph. Speialases of subgraphs inlude paths, whih traverse from one node to anotherwith no branhing, and yles whih are paths ending up at the same node.Graph theory onepts also inlude types of graph, suh as omplete graphs,where all nodes are joined by an edge as in graph A and B in Figure 3.2.Another important type of graph is the onneted graph, where there is atleast one path onneting every pair of nodes. Note that graph C in Figure 3.2is not onneted. Another type of graph we disuss later is the star graph,whih has a single node adjaent to all others.A planar graph is one whih an be drawn on a plane without any edgesrossing. Kuratowski proved that for a given graph, if there is a subgraphwhih is homeomorphi to one of two spei� non-planar graphs, then thegraph is non-planar, [Kuratowski 30℄. Graphs G and H are homeomorphi ifit is possible to add nodes to the middle of edges on G to produe H .Other important onepts in graph theory are numerial invariantsalulated by ounting some aspet of a graph. They are alled invariantsbeause if the graph is drawn di�erently, the number alulated is still the



3.1 Group Theory, Graph Theory and Number Theory 33same. Examples inlude the number of nodes, the number of edges, the num-ber of yles, the shortest yle whih goes through all nodes and so on. Otherinvariants inlude the radius and diameter of a graph whih are related tothe lengths of paths. A partiularly important invariant involves olouringthe nodes of a graph: the hromati number of a graph is the number ofolours required to give it a \proper" olouring, where no pair of adjaentnodes have the same olour. One of the most well known results in graphtheory is the four olour theorem [Saaty & Kainen 86℄ whih states that anymap drawn on a plane with adjoining regions oloured di�erently requiresonly four olours. After a long and varied history, the four olour theoremwas eventually proved with the help of a omputer [Appel & Haken 77℄.3.1.3 Number TheoryNumber theory is the oldest and most studied domain of pure mathemat-is and has been desribed by Gauss (1777-1855) as the \Queen of Mathe-matis". Perhaps the most fundamental onepts in number theory are thearithmetial operations: addition, subtration, multipliation and division.Another fundamental onept is divisors, where a divisor of an integer, x,is a positive integer whih multiplies by another positive integer to give x.For example, the divisors of 12 are f1; 2; 3; 4; 6; 12g. Proper divisors are thedivisors other than the number itself.An important onept based on this whih we use throughout this book isthe number of divisors of an integer. We write �(n) for the number of divisorsof n, for example �(12) = 6. Prime numbers are those integers with exatlytwo divisors, and these appear in ountless many theorems in number the-ory and many other domains of pure and applied mathematis. No formulais known whih will predit whih integer is the next prime on the numberline, although the prime number theorem provides an inreasingly aurateformula for their distribution: there will be approximately x=log(x) primenumbers between 1 and x [Hardy & Wright 38℄. The fundamental theoremof arithmeti states that every integer an be written as a unique produtof primes, and so primes an be onsidered the building bloks of all num-bers. There are still many open problems about prime numbers, for exampleGoldbah's onjeture states that every even number greater than two anbe written as the sum of two prime numbers [Beiler 96℄. Conepts assoiatedwith the primes inlude the � funtion, whih ounts the number of positiveintegers less than n whih are o-prime1 with n, and the � funtion, whihounts the number of primes less than or equal to n.Types of numbers other than primes have also been studied. For example,perfet numbers are those whih are the sum of their proper divisors.For example, 28 is a perfet number beause the proper divisors of 28 aref1; 2; 4; 7; 14g and 28 = 1+2+4+7+14. Perfet numbers are rare and many1 Two integers are o-prime if they share no prime divisor.



34 3. Mathematial Theoriesproperties of them are known. For example, all even perfet numbers are ofthe form 2n�1(2n� 1) where 2n� 1 is a prime (alled a Mersenne prime).No odd perfet numbers have ever been found, and although there are manyonstraints on their nature, it is not known whether there are any.Sequenes of numbers have also been studied. These may arise from simplywriting down the numbers of a partiular type in numerial order, for examplethe sequene of prime numbers:2; 3; 5; 7; 11; 13; 17; 19; 23; : : :Sequenes an also be generated by writing down the output of a funtionon the integers in order, for example the � funtion produes this sequene:1; 2; 2; 3; 2; 4; 2; 4; 3; 4; 2; : : :Sequenes an also be derived from an indutive de�nition, suh as the Fi-bonai sequene: 1; 1; 2; 3; 5; 8; 13; 21; 34; : : :whih is formed by adding the two previous terms to get the next term inthe sequene. This is an example of a reurrene relation where the nextterm in a sequene is derived by performing a alulation with the previousterms.The study of numbers reahes far bak into antiquity. Problems and re-sults from previous enturies are onstantly providing inspiration and newhallenges for mathematiians today. A good example of this is provided bythe area of Diophantine equations. Diophantus of Alexandria (. 200{284),was perhaps the �rst person to try to solve equations suh as:a3 � b3 = 3 + d3by �nding integer values of a; b;  and d for whih the equation is true. Fermat(1601{1665) looked at a general ase and onjetured that there are no valuesof n greater than 2 for whih: an + bn = nhas a solution in non-zero positive integers a; b and . Attempts to provethis onjeture { known as Fermat's Last Theorem { have oupied mathe-matiians for nearly four enturies. Finally, in 1995 Wiles proved this result[Wiles 95℄ by proving the Taniyama-Shimura onjeture from whih Fermat'sLast Theorem follows as a orollary. For a history of Fermat's Last Theorem,see [Singh 97℄.



3.2 Mathematial Domains 353.1.4 IsomorphismA key notion in mathematis is isomorphism, where the same objet anbe represented in two or more ways. For example, in Figure 3.3, graph Xan easily be redrawn to look like Y. Graph theorists say that X and Y areisomorphi, i.e. they are essentially the same. Similarly, group theorists saythat groups G and H are isomorphi if the multipliation is essentially thesame in eah. That is, there is a 1:1 onto map, �, taking elements of G toelements of H in suh a way that 8 a; b 2 G; �(a � b) = �(a) Æ �(b), where� is the group operation in G and Æ the operation in H . Groups derived inseemingly di�erent ways, suh as the symmetries of a triangle and the setof permutations of three letters, an be shown to be isomorphi by �ndinga suitable isomorphism. Often, to more quikly show that two objets arenot isomorphi, alulations alled invariants are used whih are the samefor any representation of the objet, and hene two objets with di�erentvalues for the invariant annot be isomorphi. There are also various eÆienttehniques, suh as the one desribed in [Miller 76℄, that an be employed toshow that two objets are isomorphi.
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����Figure 3.3 Isomorphi graphs3.2 Mathematial DomainsHaving looked at some areas of pure mathematis, we an draw some generalonlusions about their nature.3.2.1 Reasons Behind Theory FormationOften a theory will emerge in order to solve a partiular problem or lassof problems. For example, graph theory has its origins in the bridges ofK�onigsberg problem, and the solution of Diophantine equations has led togreat advanes in number theory. Another example is the solution of polyno-mials in terms of radials. It was known from antiquity that the two valuesof x whih made quadrati equations of the form: ax2+ bx+  equal to zero,ould be easily alulated by:x = �b+pb2 � 4a2a and x = �b�pb2 � 4a2a



36 3. Mathematial TheoriesGauss showed in his dotoral dissertation that values of x an be found tomake any polynomial of degree n equal to zero, as long as we allow x to bea omplex number. However, the question remained as to whether a formulasuh as the one above ould be found for polynomials of degree 3, 4, and soon. We say that the roots of a polynomial are expressible in terms of radialsif a formula suh as the one above an be written down for them in terms ofonly square roots, ube roots and so on.By the time of Evariste Galois (1811-1832), it was known that polynomialsof degree 2, 3 and 4 had suh a formula. Furthermore, Abel had reentlyshown that polynomials of degree 5 do not have a formula for their rootsexpressible in radials. Galois attaked the general problem { to deide forwhih degrees a polynomial has roots expressible in radials. In a majorshift of diretion in pure mathematis, Galois introdued what is now alledGalois Theory to solve the problem. Galois experimented with the symmetriesof the polynomial, and determined a struture upon them, whih he alleda `group'. In modern terminology, he de�ned the Galois group formed bythe automorphisms of the splitting �eld over the polynomial. He also provedthat the Galois group of a polynomial being soluble (as de�ned in x3.1.1)is a neessary and suÆient ondition for the polynomial to be soluble byradials. For more information about this theorem, see [Stewart 89℄.Galois' solution of the polynomial problem was ground breaking at thetime. Perhaps his biggest ontribution, however, was not the appliation tothe problem at hand, but rather the introdution of the notion of a group.Group theory is now ubiquitous in both pure and applied mathematis. Math-ematiians realised that groups themselves were very interesting and began tostudy them independently from the original problem. This provides us withan opportunity to disuss another driving fore behind theory formation { toexplore and lassify a domain.From very early on in the study of group theory, lassi�ation was a majorgoal. However, the problem was so broad that muh exploration of the domainneeded to be undertaken before it was even possible to assess the diÆulty ofthe problem. An early suess in the lassi�ation of groups was Kroneker's1870 lassi�ation of �nite Abelian groups, [Kroneker 70℄. As disussed in[Colton et al. 97℄ and [Bundy et al. 98℄, lassi�ation plays an important partin our automation of theory formation, and it is worth studying Kroneker'stheorem to provide insight into the nature of a lassi�ation.To re-ap, an Abelian group is one where every pair of elements ommute.That is, 8a; b 2 G; a � b = b � a. Kroneker proved that a �nite group G oforder n is Abelian if and only if it is a yli group or it an be written as adiret produt of yli groups in the following manner:



3.2 Mathematial Domains 37G = Cn1 � Cn2 � : : :� Cnkwhere (a) eah ni > 1, (b) n1n2 : : : nk = n and () n1 divides n2, n2 dividesn3 and so on.This theorem provides a way to lassify a given group as either Abelianor non-Abelian: hek whether it an be written as a diret produt of yligroups in the above manner. Note that this is not how the theorem is atuallyused, as it is muh easier to test for Abelianness by heking ommutativity.However, the theorem does provide a suitable test. Furthermore, this theoremalso provides a way to generate every group of a partiular order. To do thisfor groups of order n, simply �nd all those ways of writing n as a produtn = n1n2 : : : nk where eah ni is a divisor of ni+1. For example, it is notdiÆult to write down all the Abelian groups of order 100:C100; C2 � C50; C5 � C20 and C10 � C10:For more details of Kroneker's theorem, see Chapter 14 of [Humphreys 96℄.To emphasise the importane of lassi�ation in pure mathematis, wenote that in 1980, what has been desribed in [Humphreys 96℄ as one of themajor intelletual ahievements of all time was ompleted, namely the lassi-�ation of �nite simple groups. Finite simple groups an be thought of as thebuilding bloks of group theory { similar to the way in whih all integers anbe written as a produt of primes, all �nite groups an be built from simplegroups. Simple groups are those whih have no non-trivial normal subgroups.The theorem lassi�es �nite simple groups into one of four families, or as oneof 26 sporadi groups, inluding the monster group. The proof of this the-orem is very large, oupying an estimated 15,000 pages published by morethan 400 mathematiians. For further details of the lassi�ation theorem,see [Gorenstein 82℄.A third, more spei� way in whih theory formation an our is by thepathing of a faulty theory. For example, in [Lakatos 76℄, Lakatos startedwith Euler's theorem: for any polyhedron, the formula:V �E + F = 2is always true, where V is the number of verties, E is the number of edgesand F is the number of faes. Lakatos shows how example polyhedra werefound whih brought to light assumptions about the onept of polyhedraand led to the re�nements of onepts, theorems and proofs in the theory.This highlights the fat that mathematial theories are ontinually evolving,with re-lassi�ations ourring frequently.



38 3. Mathematial Theories3.2.2 Finite and In�nite DomainsIn domains suh as group theory, graph theory and number theory, thereare a set of objets of interest (groups, graphs and integers respetively).Often the objets of interest are studied by looking at a set of assoiatedsubobjets, for example groups are sometimes investigated by looking at re-lations between their elements, graphs are investigated with referene to theirnodes and edges, and integers are investigated by looking at their divisors.In many ases there are an in�nite number of objets of interest { it is learthat there are an in�nite number of integers and graphs, and it is easy toprove that there are in�nitely many groups. Whereas the set of objets maybe in�nite, often there is a way of deomposing eah objet into a �nite set ofsubobjets. For example, while there are in�nitely many integers, there areonly a �nite set of positive numbers whih divide eah one, e.g. the number12 is divisible by only the positive integers 1, 2, 3, 4, 6 and 12.It is sometimes the ase that two versions of a theory are developed,one whih deals with �nite objets, where the deomposition results in a�nite set of subobjets, and one whih deals with in�nite objets, where thedeomposition results in an in�nite set of subobjets. For example, there is atheory of �nite groups whih looks at groups with a �nite number of elements,and a theory of in�nite groups whih looks at groups with an in�nite numberof elements.It is also often the ase that there is more than one way to deomposethe objets of interest. In partiular, one deomposition of integers is into itsdivisors as above, but a seond deomposition is into the digits in their base10 representation, e.g. the number 12351 is deomposed into: f1; 2; 3; 5g). Athird deomposition of integers is into the set of positive integers less thanor equal to them, e.g. the number 5 is deomposed into: f1; 2; 3; 4; 5g.3.3 The Content of TheoriesTo automate mathematial theory formation, we need to know what is ex-peted to be in the theory. The major headings in mathematial texts are (i)de�nition, (ii) examples, (iii) onjeture, (iv) theorem and (v) proof. Underevery de�nition heading, a new onept is introdued, and examples of theonept may or may not be supplied. The onjetures and theorems developthe onepts with statements about their nature and the truth of a theoremstatement is usually demonstrated under a proof heading.3.3.1 ConeptsThe word \onept" has a multitude of interpretations. For our purposeshere, a onept will either be:



3.3 The Content of Theories 39� A desription of a set of objets of interest, suh as groups, graphs, et.� A way of deomposing objets into subobjets, suh as groups into elements,graphs into nodes.� A way of desribing tuples of objets or subobjets suh as a group beingAbelian, a divisor being prime, or a pair of digits being equal.� A way of mapping one set of objets of interest to another, suh as thediret produt of groups.� A onstrution of a sequene of objets formed by iterating a mapping,suh as the Fibonai sequene or the derived series of a group.From our study in x3.1, we note that these types of onept are ommon ineah domain. The third lass inludes funtions suh as the � -funtion, whihdesribes an integer by alulating the number of divisors it has. There is oftena good deal of overlap between these three types of onept, with desriptiononepts sometimes being promoted to objets of interest and properties ofsubobjets being promoted to subobjets themselves. For example, beausethe onept of a group being Abelian is very important, it is ommon todisuss Abelian groups as separate objets of interest. Also, prime divisorsare often thought of as a deomposition themselves, without expliit refereneto the parent deomposition: divisors.Conepts will have one or both of a de�nition and a set of examples. Ade�nition is a onrete statement about the nature of the objets of interest,or the nature of the subobjets, or the property or alulation being studiedin a desription onept. Examples are either (i) instanes of the objet ofinterest, (ii) instanes of the subobjets (whih must be stated in the preseneof the objet they are subobjets of) or (iii) instanes of tuples of objetsand subobjets with a partiular property. At the very least a de�nition willenable a lassi�ation into objets with the desired property and objetswithout the property. It may also provide instrutions for generating objetswith the property. For example, if we de�ne square numbers as being writtena�a for some integer a, we an generate square numbers easily by multiplyingany integer by itself.Sometimes the set of examples for a onept will be �nite, but oftenthey are in�nite. It is fairly ommon to have a onept with a de�nition butno examples. For instane, the onept of odd perfet numbers is very wellknown and we know many things about them without ever having foundone. It is muh less ommon for a onept appearing in the mathematialliterature to have examples but no de�nition2 and the lak of de�nition isusually temporary or withheld for some reason. For instane, suppose we ask2 Although sometimes the goal of a theory is to proeed from a ontext suh assymmetry to a �nal de�nition, in this ase the notion of a group.



40 3. Mathematial Theoriesthe question: what is next in this sequene: 1, 9, 25? The onept of integerswhih appear in the sequene exists briey without a de�nition until we an�nd a suitable one (in this ase, odd square numbers is a good andidate).Note also that a onept may have multiple equivalent de�nitions, for exampleprime numbers an be de�ned as integers having exatly two divisors, orintegers greater than 1 whih are only divisible by 1 and themselves.The notion of proof sets mathematis apart from other sienti� disi-plines. A proof is an argument whih is supposed to demonstrate beyonddoubt the truth of a partiular statement given a set of axioms whih areheld to be true. Eah statement will involve the onepts of the theory, andbefore looking at proofs, it is important to realise that the hoie of on-epts to prove things about is ruial to the ability to form proofs. For thisreason, pure mathematiians often employ two rules to determine what theydisuss. Firstly, they disuss abstrat, idealised objets of interest, e.g. lineswith no width, perfetly drawn irles and so on. Seondly, they initially useonly a limited number of ways to desribe the objets. For example, a groupis Abelian if every pair of elements ommute and, as we see below, similaronepts { where a phenomena suh as ommutativity ours for every pairof subobjets { are found in many other domains.Muh has been proved about Abelian groups beause there are no exep-tions to the ommutativity rule. It is unlikely that groups where, say, 17%of pairs of elements ommute have been studied, for one of two reasons. Ei-ther no-one has yet found a reason to study these onepts, or they havebeen overlooked beause it is likely that nothing interesting will be provableabout them. The �rst reason is more appealing, and it is ertainly true in themajority of ases: the proportion of useless onept de�nitions is very high.However, the seond reason beomes more plausible when we note that,for example, onepts whih identify objets where every possible ourreneof a phenomena ours, are ommon in mathematis. This is presumablybeause when initially exploring a domain, it is easier to make and proveonjetures about onepts with this property. Examples of suh oneptsinlude:� Abelian groups: all pairs of elements ommute.� Complete graphs: all pairs of nodes are adjaent.� Conneted graphs: all pairs of nodes are joined by a path.� Euler paths: whih pass through all nodes in a graph.� Repdigit integers: all digits are the same.� Equilateral triangles: all angles are the same.



3.3 The Content of Theories 41We an generalise this observation further by noting that objets wherethere is no ourrene of a phenomena are also ommon in mathematis,e.g. odd numbers are not divisible by 2, losed graphs have no endpoints.Also, objets with exatly one (unique) subobjet of a partiular nature areommon, e.g. symmetri groups have exatly one entral element, star graphshave exatly one node adjaent to all others. Continuing, we an observe thatobjets with a �xed number of subobjets are ommon { prime numbers haveexatly two divisors.As well as looking at the internal struture of the objets of interest, it isalso ommon to look at maps between objets. For example in number theory,any funtion from the integers to the integers will map the objets of interestto themselves. One a map has been de�ned, it is ommon to onstrut se-quenes of objets. For example, as we saw in x3.1, sequenes of groups suhas the derived series are important in group theory, and sequenes of num-bers are important in number theory. There is ertainly some evidene that toahieve an initial understanding of a domain, ertain ommon onstrutionsare arried out whih lead to subobjets, desription onepts, maps and se-quenes. This observation forms the ore of our method to invent onepts,as desribed in Chapter 6.3.3.2 Conjetures, Theorems and ProofsAs with many disiplines, statements are made in pure mathematis aboutonepts appearing in a theory, then an argument is presented in favour ofthe truth of the statement. In pure mathematis, the arguments are not justdemonstrations that the statement is likely to be true based on all availableevidene. Rather, an argument is meant to be irrefutable and everyone whounderstands it should agree it proves that the statement is true. While therehave been inorret proofs aepted as true for many years, it is generallyhoped that the truth will prevail, and that it is not possible to fool all of themathematiians all of the time.It is ommon to all the arguments presented in mathematis \proofs"with the statements made being termed \open onjetures" until a proof oftheir truth is found,3 after whih time they are alled \theorems". Oftenonjetures will arise from the observation of patterns in empirial evidene,suh as the observation that: \all square numbers have an odd number ofdivisors". However, it is also possible to make and prove theoretial state-ments for whih there is no supporting evidene. For example, we know thatan odd perfet number will be a sum of squares [Stuyvaert 97℄, but no oddperfet number has ever been found. As with onepts, we an also identifysome ommonalities between onjeture statements. In partiular, we notethat there are three very ommon formats for onjeture statements:3 An exeption to this rule is Fermat's Last Theorem, whih was alled a theoremeven though it remained unproved for more than 300 years.



42 3. Mathematial Theories� Non-existene onjetures { that there are no objets of interest with apartiular property, e.g. there are no odd perfet numbers.� Impliation onjetures { that the presene of one property implies thepresene of another property, e.g. all yli groups are Abelian.� Equivalene onjetures { that one de�nition is equivalent to another. Theseare often alled if-and-only-if onjetures, where an objet is of a ertainnature if and only if it is of another nature. For example, an even number isperfet if and only if it is of the form 2n�1(2n � 1):The question of how to automate theorem proving has been a majorresearh topi from the birth of Arti�ial Intelligene, and it is beyond thesope of this book to add in detail to this disussion. However, an observationthat we build on later is that, as a theory progresses, more and more omplextheorems will be proved, with the proofs of the latter theorems relying heavilyon using the previous results without proving them again. In this way, atoolbox of theorems about the onepts being disussed is built up and usedto takle ever more ompliated problems.3.3.3 Other Aspets of TheoriesConepts, onjetures, theorems and proofs form the bulk of most theories inpure mathematis. Additionally, ertain theorems may have very ompliatedproofs and to simplify matters, some initial results alled lemmas may bestated. Then, the lemmas an be used without proof in the proof of the moreimportant theorem and this inreases larity. For example, in Kroneker'slassi�ation of �nite Abelian groups, the result that all yli groups areAbelian may be presented as a lemma. Other onjetures may be presentedas orollaries to a partiular theorem. These are results whih follow fromthe theorem statement with little or no additional proof. Often it is thease that the orollary was the original result whih sparked interest in thetheory, but the theorem is a generalisation from whih the orollary followsas a speial ase. For example, Fermat's famous Last Theorem was eventuallyproved as a orollary to the Taniyama-Shimura onjeture [Singh 97℄.Algorithms also appear in theories. One way to think of these is as equiv-alene onjetures where the output from the alulation desribed by thealgorithm is the same as a onept de�ned in some other way. Often theoriginal de�nition will be more aestheti than the algorithmi de�nition, andthe original is more likely to be used in proofs. However, the algorithmi def-inition will usually provide a more eÆient proedure for the alulation ofexamples of the onept. For example, the Sieve of Eratosthenes is an algo-rithm whih an be used to produe prime numbers more eÆiently than asimple generate and test method. Sometimes, the algorithm may provide theonly sensible way of �nding examples, as a generate and test method wouldtake far too long. It is interesting to note that the proof that an algorithm



3.4 Summary 43produes examples mathing the original de�nition is often omitted when thealgorithm is stated [Furse 99℄. This is usually either beause the proof is triv-ial (as with the Sieve of Eratosthenes), or too diÆult, for example the proofthat the Eulidean algorithm atually omputes the greatest ommon divisorof two numbers is rarely given alongside the statement of the algorithm.Mathematis texts also ontain exerises whih enable the reader to gaina better understanding of the theory by solving problems, proving orollar-ies, performing alulations and algebrai manipulations and so on. We alsonote that a theory may ontain detailed examples whenever a de�nition isdiÆult to understand. It may also ontain demonstrations of the power ofan algorithm or the usefulness of a theorem. There may also be itations andhistorial or other anedotes, and indiations of the relevane or history of apartiular result. The mathematiian Hardy was partiularly well known forembellishments of his texts in his overall plan to keep a mathematial theorybeautiful [Hardy 92℄. Unfortunately, this is not true of many ontemporarytexts, whih often proeed with rigid triples of de�nition, theorem and proof.3.4 SummaryIt is estimated in [Ho�man 99℄ that around 250,000 theorems are proved andpresented in journals every year and the number of theories and sub-theoriesof pure mathematis is ever inreasing. Mathematial theories are the resultsof diverse and ompliated intelletual undertakings arried out by manymathematiians over many years. They may be developed in response to apartiular problem or a general desire to explore and lassify a domain. Thenotion of truth is paramount and substantial proofs are often required evenfor trivial statements.To begin to propose a method for automatially produing a mathematialtheory, we have started by looking at three domains of mathematis andderiving ommonalities between them and other theories. In partiular, theobservations that we draw on are:� Exploration and lassi�ation an drive theory formation.� Theories ontain onepts explained with de�nitions and examples, as wellas open onjetures, theorems and proofs.� There are ommon types of onept and onjetures.� Conjetures an be made using empirial evidene.� Previously proved theorems are ollated and used without proof to helpprove more ompliated theorems.These observations will be developed over subsequent hapters into algo-rithms for automatially produing a theory in pure mathematis.





4. Design Considerations
1, 3, 15, 21, 25, 33, 39, 45, 51, 57, 69, 75, 81, 87, 93, 111, 123, : : :A036897. The square root of odd refatorable numbers.Our �rst major deision was to implement HR in Sistus Prolog, due tothe rapid prototyping this programming language a�ords. Before desribingthe other implementation details, we highlight our major deisions regardinghow HR will form theories. These have been taken in light of our originalmotivations, our survey of previous work and our study of mathematialtheories. In x4.1, we disuss the aspets of theory formation whih are andare not present in our model. We then fous on the three areas where mostdeisions have been made. Our proposed approah to onept formation andonjeture making is presented in x4.2. In x4.3 we determine the domains HRwill work in and in x4.4 we disuss our hoies for representing mathematialknowledge. Finally, in x4.5, we give an overview of how HR forms theories.4.1 Aspets of Theory FormationHaving identi�ed some aspets of mathematial theories in Chapter 3, our�rst design onsideration was whih aspets to model in HR.4.1.1 Aspets Whih are ModelledAs disussed in the previous hapters, amongst other things, mathematialtheories ontain onepts with examples and de�nitions, as well as open on-jetures, theorems, proofs and ounterexamples to non-theorems. To generatetheories, HR must therefore be able to invent onepts omplete with exam-ples and a de�nition, as well as make, prove and disprove onjetures. Wemodel all of these ativities in HR.Automated theorem proving and ounterexample �nding have been re-searhed extensively, and we draw from, rather than add to these areas. Inpartiular, we use the Otter theorem prover [MCune 90℄ to prove theoremsand the MACE model generator [MCune 94℄ to disprove onjetures. We



46 4. Design Considerationsalso wanted to model the way in whih earlier theorems are used to provelater ones, so we have enabled HR to ollate sets of theorems whih Otter hasproved and use them to derive proofs of later theorems without using Otter.MACE has some limitations with onjetures involving numerial onepts,so we also implemented a generate and test tehnique whih enabled HR toperform ounterexample �nding without using MACE.In addition to modelling all the individual tehniques, we have endeav-oured to model some aspets of how they interat, inluding some more dy-nami aspets of theory formation. We deided to implement an exploratoryapproah to theory formation similar to those employed by AM and GT. HRestimates whih are the most interesting onepts and develops these untilmore interesting ones ome along. To do this, it uses an evaluation fun-tion whih alulates a weighted sum of various measures of the onepts.To enhane this proess, we have modelled a yle of mathematial ativitywhereby the onjetures, theorems and proofs involving a onept are usedto assess that onept. This models the way in whih the interestingness ofa onept hanges as the quality and quantity of onjetures involving thatonept hanges.By providing ertain task-related measures, the heuristi searh an alsomodel the way in whih theory formation is driven by a partiular task. HRan be instruted to use theory formation to �nd a onept whih ahievesa lassi�ation task. This is a mahine learning problem, but we have imple-mented this to model task-driven theory formation rather than to apply HRto mahine learning problems.4.1.2 Some Aspets Whih are not ModelledWhen a onjeture of some importane has been made, a theory may evolvearound the onepts and lemmas of the onjeture in order to prove or dis-prove the onjeture. This is an important appliation of theory formationwhih we urrently do not model in HR, although we hope to pursue thisin later projets, as disussed in Chapter 14. Another aspet of theory for-mation is the re-working of de�nitions and onjeture statements so thatthe most suint and pertinent version of onepts and onjetures are pre-sented. This is a non-trivial problem whih involves inventiveness, dedutionand understanding to arrive at the best de�nition or statement for the situa-tion. As we disuss later in x9.3, whenever HR �nds two equivalent de�nitionsfor a onept, it will keep the less ompliated one. However, we have notimplemented any more sophistiated re-writing tehniques.We have not modelled an approah to onjeture making where the sug-gestion of new onjetures is based on previously proved theorems. For ex-ample, a program ould somehow make an informed suggestion that beauseit has proved theorem A and theorem B, onjeture C may also be true.One it had suggested this, it may look for ounterexamples, or attempt aproof immediately. We prefer an empirial approah where HR only suggests



4.2 Conept and Conjeture Making Deisions 47onjetures whih are true of all the urrent data. We disuss the advantagesof this in x4.2.1 below.We have not modelled the way in whih the proof of a theorem an beanalysed to provide more information about the onepts involved in thestatement of the theorem. This is beause we have found it diÆult to gainsuh information from the proofs Otter produes. Analysis of proofs maybe a future development for this projet. Similar future possibilities inludemodelling the soial aspets of mathematis and the prodution of ross-domain theories, as disussed in x14.3.4.2 Conept and Conjeture Making DeisionsOur �rst deision about onept formation was to base new onepts on oldones. This was inspired by the observation mentioned in Chapter 1 that itis possible to understand ompliated onepts by relating them via smallsteps to less ompliated ones. Reversing this proess suggests onstrutingnew onepts from old ones in small steps. In x3.3, we identi�ed some ommononstrution tehniques to build new onepts from old ones, e.g. we notedthe similarities between the onepts of Abelian groups, omplete graphs andequilateral triangles. These are onstruted by taking an old onept relatingtwo subobjets (ommutativity of elements, adjaeny of nodes and equal-ity of angles respetively), and onstruting a new onept whih identi�esobjets where all pairs of subobjets are related in the given manner.We hose to build new onepts using prodution rules, whih embedonstrution tehniques as well as a set of pre-onditions whih must besatis�ed before the onstrution an our. The pre-onditions are based onqualities of the old onepts from whih the new ones are built. This approahenables HR to rule out many onstrutions, whih is important as buildingonepts from eah other an lead to a ombinatorial explosion.Eah prodution rule is designed to onstrut onepts in one of the gen-eral ways we identi�ed in the mathematial literature. For example, the`forall' prodution rule we disuss in x6.8 takes the onept of adjaenyof nodes and produes the onept of omplete graphs. Following similarmethodology to that employed with the BACON programs, eah produtionrule was added to enable HR to re-invent onepts it ould not previouslyreah. These onepts ame from di�erent domains, and we were areful toimplement prodution rules whih were as general as possible.4.2.1 The Use of ExamplesSome mathematis textbooks use illustrative examples sparingly. Automatedonept formation ould proeed without using examples by making new de�-nitions via some syntatial manipulations of previous de�nitions. This would



48 4. Design Considerationsause two eÆieny problems. Firstly, we say that a onept is inonsistentwith the axioms of a theory if there are no examples for it (and this fat isproved). For example, the onept of prime square numbers is inonsistentwith the usual axiomatisation of number theory as there are no integers whihare both square and prime.It is desirable in our situation to disard provably inonsistent oneptsas they have no examples upon whih empirial onjetures ould be based.Furthermore, if we build upon an inonsistent onept, the result is likely tobe inonsistent also, whih may result in a theory full of onepts with no ex-amples. Without using examples in theory formation, deteting inonsistentonepts would require an attempt to prove that no examples exist for everynew onept formed. This would be time onsuming, as is the ase with theBagai et al. system (see x2.2.4). However, with an example-based approahwhih onstruted the examples of a onept alongside the de�nition for it,those onepts with examples are learly onsistent and this insight wouldavoid the need to prove inonsisteny in these ases.Seondly, it is undesirable to maintain two onepts with provably equiv-alent de�nitions. Suh opies an our via di�erent onstrution paths andfurther development of both will result in a dupliation of work. Again, with-out examples in the theory formation, to guard against dupliation HR wouldneed to attempt to prove that every new onept is di�erent from all previ-ous ones. This would mean running through every old onept until a mathwas found. However, using examples narrows the searh to just those whihhave the same examples, as two onepts with di�erent examples annot beprovably equivalent.Beause we wish to eÆiently keep the theories onsistent and free of re-dundany, we hose an example-based approah to theory formation whereinthe examples as well as a de�nition for every new onept are generated. Infat, as we will disuss in x4.4, the examples of a onept are used to representit and onept formation ours by transforming the examples of one oneptinto a set of examples for the new onept. While de�nitions are important,they take a seondary role in the theory formation and are generated onlywhen needed. For instane, if HR forms a onjeture about a onept, it mustgenerate a de�nition for the onept in order to pass the onjeture to Otter.By building new onepts from old ones, we an model the way in whihertain onepts are hosen for development beause they are more interest-ing than others. The development of onepts may be in terms of making andproving onjetures about them, or deriving new onepts based on them. Aonept may be onsidered interesting for a number of reasons, suh as per-forming a partiular task like lassi�ation, or beause it has a partiularproperty or is involved in an important theorem. The properties may involvethe de�nition or the examples of a onept, whih is another reason to useexamples. We deided to enable HR to estimate the interestingness of theonepts it produes in terms of tasks, properties and onjetures, and per-



4.3 The Domains HR Works in 49form a heuristi searh by basing new onepts on the most interesting oldones. This means that HR will also need to assess the onjetures it makes.4.2.2 Making ConjeturesHR's ability to generate onjetures originated in the desire to keep the theo-ries onsistent and free of redundany as disussed above. In the ases wherea onept has no examples in the data available, this ould be beause theonept is inonsistent with the axioms, or due to a lak of data. Therefore,HR makes the onjeture that there are no examples of the onept. Onlyif this is proved is the onept disarded (but the onjeture kept). If theonjeture annot be proved, an attempt is made to �nd a ounterexample.Similarly, if two onepts have the same examples, we annot assume this isbeause they are logially equivalent, it may be a oinidene due to a lakof data. This provides another opportunity to make and attempt to settle aonjeture. As well as these tehniques whih aim to improve the quality ofthe theory, we also deided to implement two other onjeture making teh-niques whih highlight properties and relationships between onepts withoutdisarding any of them, as disussed in Chapter 7.4.3 The Domains HR Works inWith an example-based approah, HR an only work in domains whih have�nitely representable examples of the objets of interest. We will disuss inx4.4.1 how the user must supply some subobjet onepts, for example thedeomposition of integers into divisors. For reasons given in x4.4.1, we imposethe requirement that all the deomposition onepts provided by the user aresupplied with a full set of examples for every objet of interest in the theory.For example, the onept of divisors must be supplied with every divisor forall the integers in the theory, e.g. if the number 10 was an objet of interestin the theory, then all its divisors, namely 1, 2, 5 and 10 must be supplied.The prodution rules are designed to output onepts with similar full sets ofexamples. This means that any onjeture HR makes will be true for all theexamples it is working with. Theoretially, this restrition ould be removedto allow HR to work with a partial set of subobjets for ertain objets ofinterest, but the number of false onjetures produed would inrease.These restritions don't neessarily rule out in�nite domains, e.g. in�nitegroup theory, where the number of elements in a group is in�nite. This isbeause there are �nite representations available whih have assoiated sub-objet onepts. For example, the generator and relations way of presentingin�nite groups has a deomposition onept: a group into its generators. Inin�nite domains, ertain onepts would have to be omitted, for examplethe onept of elements in in�nite group theory. This is beause it would



50 4. Design Considerationsbreak our restrition that the objets are supplied with full examples, whihis learly not possible when there are in�nitely many. Although our restri-tions do not rule out in�nite domains, we have so far only worked with �nitedomains beause the possibility of using �nitely represented in�nite objetswas only realised late in the projet.For eah domain and hoie of onepts, there is an overhead in the timeit takes us to enable HR to work and for us to study the results. For thisreason, we have restrited ourselves to working mainly in three domains:group theory, graph theory and number theory. We also restrit the hoie ofsubobjets to the following:Domain Subobjets�nite group theory elements�nite onneted graph theory nodes and edges�nite number theory divisors, digits and smaller integersWe hose onneted graphs rather than general graphs as there are feweronneted graphs to work with, and many interesting types of graph areonneted.HR an also work with �nite algebrai systems suh as quasigroups andrings, and we oasionally draw on examples from algebrai systems otherthan group theory. Our disussions of HR's methods in group theory applyto any �nite algebrai system. There are other ways to deompose groupsand graphs inluding the deomposition of groups into subgroups and graphsinto subgraphs and paths. However, we have not used these deompositions.HR was originally developed in group theory, but the methods employedwere suÆiently general to allow it to work in any domain where a set ofobjets of interest an be �nitely represented and deomposed into a �niteset of subobjets. Other domains HR ould oneivably work in inlude �nitegeometry, with the objets of interest being geometrial diagrams deomposedinto �nite sets of points, lines, irles, angles, et., or knot theory, where eahknot is deomposed into line segments and rossings.4.4 Representation IssuesAs with many programs in Arti�ial Intelligene, representation is an im-portant issue in the design of HR. We require the representation of oneptsto enable the use of general purpose prodution rules for the derivation ofnew onepts. Also, HR will be required to produe onept de�nitions whihan be (i) understood by the user, (ii) used by Otter and MACE and (iii)interpreted by the underlying Prolog implementation, for reasons given later.A onept has a single set of examples, and two onepts are distint if anyexamples of one are not shared by the other. In ontrast, a onept may havemany de�nitions, for example, we gave two de�nitions for prime numbers



4.4 Representation Issues 51in x3.3.1. Taking these onsiderations into aount, we deided to representonepts by their examples, with the de�nitions taking a seondary role, asproperties of the onept rather than a representation of it. HR onstrutsexamples of eah new onept, but will only produe a de�nition when oneis required.4.4.1 Examples of ConeptsThe examples of a onept suh as prime numbers are those integers whihsatisfy its de�nition, namely 2, 3, 5, 7, 11, et. The examples of a fun-tion an be taken to be input and output pairs, for example, the � fun-tion in number theory ounts the number of divisors of an integer. As�(1) = 1; �(2) = 2; �(3) = 2 and so on, we take the examples of this funtionto be the set of pairs (1; 1); (2; 2); (3; 2); : : : ; (a; �(a)); et. Similarly, the ex-amples of onepts with a prediate de�nition are the tuples of objets whihsatisfy the prediate. For example, the examples of the onept of divisorsare pairs of integers (I; d), where d divides I.As we disuss further in Chapter 5, the user supplies a �nite set of objetsof interest whih we sometimes all the entities of the theory. These will betaken from a possibly in�nite set. The user also supplies some onepts whihprovide �nite deompositions of the objets into subobjets. As the numberof subobjets for eah entity is �nite, HR an store the entire set of examplesfor the initial onepts by turning every pair (E; S) of entity and subobjetinto a row in a data table. For example, suppose HR was supplied with theintegers 1 to 5 as objets of interest in number theory, and the subobjetonept of divisors. We hose to represent this onept with the followingdata table onsisting of pairs of integers (I; d) where d divides I :1 (Divisors)integer divisor1 12 12 23 13 34 14 24 45 15 5At the top of every data table we put the name of the onept and a uniqueidenti�ation number, followed by the types of objets in eah olumn. In theabove example, we make the di�erene between the integers whih are theobjets of interest, and the subobjets being used to desribe the objets,



52 4. Design Considerationsnamely the divisors. From this point, we refer to the examples of a oneptas its data table. All the onepts onsidered here will have data tables wherethe �rst olumn ontains entities and the other olumns ontain subobjetsor subobjets of subobjets and so on.Relations between subobjets may also be given as initial onepts. Forexample in group theory, the group operation onept is given with a datatable where the �rst olumn ontains groups and the three other olumnsontain elements, with the triple of elements satisfying the group operation.i.e. the data table ontains rows of quadruples (G; a; b; ) suh that a; b;  2 Gand a�b = , where � is the group operation. For example, this Cayley table:1C3 0 1 20 0 1 21 1 2 02 2 0 1is stored as this data table:2 (Group Multipliation)group element element element3 0 0 03 0 1 13 0 2 23 1 0 13 1 1 23 1 2 03 2 0 23 2 1 03 2 2 1In x4.2.1, we gave reasons for wanting eah data table to be omplete forevery objet of interest supplied. This needs are beause the data tables arepotentially in�nitely expandable. However, data tables only inrease in sizewhen a new objet of interest is added, as we shall disuss in x8.3. Theseourrenes are rare and we have not found data table size to be a problemin pratie.The data table must also be sound, i.e. ontaining no tuples whih do notsatisfy the de�nition of the onept. Furthermore, we want to avoid redun-dany in data tables, i.e. we do not want data tables whih have repeatedrows. HR must generate new data tables whih are sound, omplete and haveno redundany and eah prodution rule is designed with these spei�ationsin mind.1 Using 0 for the multipliative inverse in a group is non-standard, but it orrelateswith how HR stores the groups internally.



4.4 Representation Issues 534.4.2 De�nitions of ConeptsEvery row of a data table ontains a tuple satisfying a prediate, and wewanted to reet this in the way de�nitions are presented. The general formatfor the de�nitions HR will generate is as follows:C. [E; s1; s2; : : : ; sn℄ : P (E; s1; s2; : : : ; sn)where P is a prediate, E is an entity and the si are subobjets of E. C isthe onept identi�er { always a number. This format highlights the natureof the data table for onept C { it will have rows of tuples of the form(E; s1; : : : ; sn) whih satisfy P . For example, the data table for onept 1on page 51 above has pairs (I; d1) suh that d1 divides integer I . Thus wepresent the de�nition of this as:1. [I; d1℄ : d1jISimilarly, the de�nition for the multipliation of integers is presented as:[I; d1; d2℄ : d1jI & d2jI & d1� d2 = IThis de�nition has some redundany beause d1 and d2 must be divisorsif they multiply to give I . However, it highlights that the onept has a datatable with three olumns, the �rst of whih ontains integers I , with theseond and third ontaining divisors of I whih multiply together to give I .We do not use typing of variables in the de�nition, for reasons given below.Instead, HR writes the de�nitions by �rst stating that eah variable representseither an entity or a subobjet of the entity, or a subobjet of a subobjetand so on. This information is supplied before any relations between thesubobjets are added to the de�nition. We justify this hoie later whendisussing Prolog style de�nitions.In ases where there is only one possibility for the origin of the subobjets,we abbreviate the de�nitions. For example, in group theory, any element in ade�nition will be an element of the group, and the user is expeted to assumethis. Therefore, instead of presenting the onept of group multipliation withthis de�nition:2. [G; a; b; ℄ : a 2 G & b 2 G &  2 G & a � b = we take for granted that letters a; b and  stand for elements of the group,and so present the de�nition more suintly as:2. [G; a; b; ℄ : a � b = Table 4.1 gives the lettering onventions HR uses for variable symbols ingroup theory, graph theory and number theory.If the symbols n1, n2, et. appear in a graph theory de�nition, the readeris expeted to assume they are nodes of the graph being disussed, and thisinformation is not given expliitly. Similarly, symbols e1, e2, et. are assumed



54 4. Design ConsiderationsDomain Entity Letter Subobjet Symbols Subobjet nameGroup Theory G a; b; ; : : : elements of the groupGraph Theory G n1; n2; n3; : : : nodes of the graphe1; e2; e3; : : : edges of the graphNumber Theory I d1; d2; d3; : : : divisors of the integerdig1; dig2; dig3; : : : digits of the integera; b; ; : : : positive numbersless than the integerAll Theories A;B;C; : : : integers introdued(see below)Table 4.1 Symbols for variables in de�nitionsto represent edges. Note that the letters A;B; : : : ; Z are reserved for numeri-al values whih are introdued in onepts produed by the size produtionrule, as we will disuss in x6.5. In pratie, we employ these letters in thefollowing order: N;M;X; Y; Z;A;B; : : :, whih is simply to help us rememberthat N stands for number. We do not use the letter I for suh an introduednumber, as this is reserved for the integers in number theory.Beause of the aspets of theory formation we are modelling, HR will needto produe onept de�nitions in two di�erent formats. Firstly, it must writeonepts in a format so that the onjetures involving them an be read byOtter and MACE. This format is also mainly used to display the onepts tothe user, although some alterations are required for numerial onepts.As noted in x2.4.2, onepts are represented in the Progol program as logiprograms and they an be interpreted by an underlying Prolog interpreter.Following this example, we deided that HR should also generate a de�nitionfor onepts in a Prolog style. These de�nitions will be used to generateexamples of onepts whih in turn will be used to disprove onjetures asdisussed in x8.3.2. This usage explains why we do not use types in thede�nitions. For instane, we ould write multipliation as:[I; d1; d2℄ : d1 2 N & d2 2 N & d1� d2 = IHowever, a similar format for the Prolog de�nition would produe a on-ept whih is able to hek whether three integers satisfy the relation, butnot able to eÆiently generate examples of the onept. This is beause theinformation that d1 and d2 are of type integer does not narrow down thesearh for examples enough.However, if the de�nition used the information that d1 and d2 are divisorsof I , then the searh for triples an start with values of I and look for pairsof divisors to omplete the triple. Furthermore, suppose the user supplies aProlog de�nition for the onept of divisors whih is able to generate the set ofdivisors for any number { a requirement disussed in the next hapter. Thenthe de�nition of multipliation an be used to generate triples I; d1 and d2for whih d1� d2 = I . This is done by using the Prolog de�nition of divisors



4.4 Representation Issues 55to generate all the pairs of divisors of I and disarding those pairs whihdon't multiply to give I . Therefore, by writing de�nitions as sets of objet-subobjet deompositions and subobjet-subobjet relations, we an improvethe proess of generating examples. As well as produing ounterexamples,the Prolog de�nitions will also be used to generate more examples when theuser requires, for example extending an integer sequene.As de�nitions are only generated when needed, we annot assume thatan old onept has a de�nition already generated whih an be manipulatedto produe a new de�nition. Therefore, eah de�nition is built entirely fromsrath. To enable this, we reord the onstrution history of eah onept,whih is a triple onsisting of an old onept (or a pair of two old onepts), aprodution rule and a parameterisation. The onstrution history of a oneptdesribes how the prodution rule onstruted the new onept from theold one(s). De�nitions are generated by starting with the initial, user-given,de�nitions and building eah new de�nition from that of its predeessorsusing the onstrution history to do this. Eah prodution rule was arefullydesigned to ensure that the data table and the de�nition generated for aonept math up. i.e. the prediates in the de�nition orretly desribe thetuples in the data table, whih we disuss in x6.9.3.To summarise, we want HR to onstrut a de�nition in two formats foreah onept, namely a de�nition understandable by Otter and MACE anda Prolog de�nition whih an be read by the underlying interpreter. This tiesin well with our deision to represent the onepts with their data tables, yetto generate de�nitions only when they are required. As the theory formationadvanes using only the examples of the onepts, it is not dependent on ourhoie of syntax for the de�nitions. This has enabled us to implement waysfor HR to generate de�nitions in di�erent formats.4.4.3 Representation of Conjetures, Proofs and CounterexamplesAs will be disussed in Chapter 7, HR makes only a few types of onjeture,whih are stored in terms of the type of onjeture and the onepts it in-volves. The onjetures are easy to present in terms of the de�nitions of theonepts involved in the onjeture. Hene no speial onsideration is takenover the internal representation and external presentation of the onjetures.To improve the hanes of proving a onjeture, HR breaks eah oneinto sub-onjetures and attempts to prove eah sub-onjeture individually.Every sub-onjeture whih is proved is stored by HR so that it an be usedto prove later theorems. A sub-onjeture omprises a set of premises and agoal whih is proved to follow from the premises. Sub-onjetures are storedas a triple onsisting of three things, (a) the type of objet whih the sub-onjeture is disussing (i.e. whether it is about groups, or elements in groups,et.), (b) fats omprising the premise and () the fat whih is the goal.Little use of proofs is made and HR extrats only two things from proof at-tempts, namely whether the attempt was suessful and Otter's proof length



56 4. Design Considerationsstatisti. Therefore, there is no need to store or present the proofs that Otterprodues. When MACE produes a ounterexample, it is inorporated as anew entity by adding it to the data table of eah onept. Therefore, HR doesnot store ounterexamples separately.4.5 The HR Program in OutlineThe following overview of how HR forms a theory will help us view theindividual methods disussed in the following hapters within the overallframework. HR starts eah session with some bakground information aboutthe domain, whih an be as little as the axioms of a �nite algebrai system,but may also inlude initial onepts given with de�nitions and mathingdata tables. HR then onstruts a theory by basing new onepts on theinitial ones. To do this, it uses prodution rules to transform the data tablesof old onepts into a new data table whih represents the new onept. HRreords the onstrution history of eah new onept.
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4.6 Summary 57After a new onept is generated, HR tries to make onjetures aboutit and attempts to settle any onjetures found. If it is proved that thereare no examples of the onept, or that it is equivalent to an old onept,the onept is disarded, but the theorem is kept. To settle onjetures, HRwrites the onjeture statement using the de�nitions for onepts, whih aregenerated using the onstrution histories. Conjetures are passed to Otterand MACE in order to prove or disprove them. Eah onjeture is brokeninto sub-onjetures and those whih are proved are stored to be used laterfor proving theorems without using Otter.HR deides whih onepts to use as the basis for onept formation byalulating an evaluation funtion for eah onept and sorting them a-ordingly. The evaluation funtion uses a weighted sum of measures for eahonept. The user sets the weights for the weighted sum and the measures arebased on (i) tasks to ahieve suh as lassi�ation, (ii) properties of the on-ept and (iii) onjetures involving the onept. Thus HR also evaluates theonjetures. Evaluation of onepts ours at the end of a theory formationstep and a theory is onstruted by repeatedly performing theory formationsteps. Figure 4.1 gives a shemati overview of a theory formation step.HR ats autonomously during theory formation. The role of the user is toset ertain parameters before a theory formation session begins. The settingsontrol how the theory will be onstruted, for example, how HR shouldassess the onepts, whih prodution rules to use and so on. The user asksHR to onstrut a theory ontaining a ertain number of things, e.g. 100onepts, 250 onjetures, or they ask HR to onstrut a theory for a ertainlength of time, or to omplete a ertain number of steps. Afterwards, the useran use various tools to examine the theory HR has produed, and an alsoask HR to ontinue onstruting the theory. By setting the parameters, theuser an greatly inuene the theory that HR will produe. However, there isno mehanism similar to those in AM and GT, where the user an diret thesearh by speifying fous onepts. We have preferred to use HR to modeltheory formation with only initial guidane, so we an see how hanges inthe initial settings a�et the nature of the theories produed.4.6 SummaryIn order to appreiate the implementation of HR disussed in following hap-ters, we have presented and justi�ed the design deisions we made. Whileeah deision may a�et more than one aspet of the implementation, inthe following table, we give relevant hapters where partiular tehniques aredesribed in the most detail.



58 4. Design ConsiderationsDesign Deision Chapters� Complete and sound onepts must be supplied by the user. 5, 6� Conepts will be represented by data tables. 5, 6� New onepts will be built from old ones using general 5, 6prodution rules.� Prodution rules will produe new data tables and de�nitions. 6� The data tables HR generates must be omplete and sound. 6� HR generates de�nitions in Otter and Prolog syntaxes. 6, 8� The de�nitions generated must math with the data tables. 6� Conjetures will be made using empirial evidene. 7� HR will attempt to settle onjetures using Otter and MACE. 8� HR will use a generate and test approah to �ndounterexamples itself. 8� A set of theorems will be ollated to help in theorem proving. 8� Conepts will be assessed in terms of properties, tasks 9,10and onjetures.� Conjetures will also be assessed. 10



5. Bakground Knowledge
1, 9, 36, 225, 441, 625, 1089, 1521, 2025, 2601, 3249, 3600, 4761, : : :A036907. Square refatorable numbers.Bakground knowledge is important to theory formation, as it is the startingpoint from whih the theory evolves. We disuss here what bakground knowl-edge HR is supplied with and how it is supplied. As all onepts are builtfrom ones already in the theory, every onept is ultimately built from thosesupplied initially by the user. If we note that all the onjetures, theoremsand proofs are based on onepts, we see that the hoie of initial oneptswill have a profound e�et on the theories produed. While there is somesope for giving HR many initial onepts, we have so far only experimentedwith giving HR the fundamental onepts of a domain.There are two methods by whih HR an be given onepts. Either theuser an supply a set of onepts diretly, or HR an use the axioms ofthe theory to generate a set of initial onepts itself, in whih ase all theuser needs to supply are the axioms of the theory. In x5.2 we disuss whatinformation about the initial onepts needs to be supplied. Then, the twoways the user an provide the initial information are disussed in x5.3 andx5.4 respetively. Firstly, in x5.1, we disuss the entities whih are suppliedto HR.5.1 Objets of Interest (Entities)The objets of interest of a theory are the fundamental entities whih thetheory disusses. In �nite group theory, the entities are �nite groups, in num-ber theory they are integers, and in graph theory they are �nite onnetedgraphs. Eah entity supplied to HR must be given a unique label. In numbertheory, the entities are simply labelled 1, 2, 3, et. and we start with thenumbers 1 to 10, or sometimes the numbers 1 to 30 or 1 to 50. In grouptheory we usually supply the eight groups with six or fewer elements, andthese are labelled with their group theoreti names:C1; C2; C3; C4; D2; C5; C6; S3



60 5. Bakground KnowledgeNote that Cn is the yli group with n elements, D2 is the dihedral groupof degree 2 (with four elements) and S3 is the symmetri group of degree 3(with six elements). Sometimes, we supply the 14 groups with eight or fewerelements. In graph theory, we usually supply the 10 onneted graphs withfour or fewer nodes. Instead of providing the graph theoreti names, we preferto label the graphs:G1:1; G2:1; G3:1; G3:2; G4:1; G4:2; G4:3; G4:4; G4:5; G4:6;where Ga:n signi�es that the graph is the nth one with a nodes.Along with a unique label, eah entity must be desribed by a set ofinitial onepts whih an either be a way of deomposing the entities intosubobjets or a relation between the subobjets. For HR to work at all, atleast one deomposition onept must be supplied. Any additional oneptswill help produe a riher theory. For instane, if HR is only supplied withthe deomposition of integers into their divisors, the theory will, of ourse,only disuss integers in terms of their divisors. However, if the deompositionof integers into their digits is also supplied, then HR has two ways to desribeintegers, and the theory will be riher as a result.5.2 Required Information about ConeptsAs disussed in the previous hapter, HR's theory formation is example based,so it is important that examples are supplied for eah initial onept. Thisinvolves supplying a data table whih is omplete for the set of entities ho-sen. For example, if the user hooses to deompose integers into divisors,a data table must be supplied whih ontains every divisor of every entity.Similarly, a relation onept should have a data table ontaining every tupleof subobjets whih are related. The tables must also be sound. That is, noobjets should appear if they are not a produt of the deomposition, and notuple of subobjets should appear in the data table of a relation onept ifthey are not related in the manner presribed by the onept.Also, for HR to orretly deide how to apply prodution rules to generatenew onepts, it needs to know what types of subobjet are in the olumnsof eah data table. We de�ne the type of a subobjet to be the name ofthe subobjet onept from whih it ame. For example, HR is given thesubobjet onept of divisors of integers. It is also given the relation oneptof multipliation, where two divisors of an integer are related if they multiplyto give the integer. The multipliation onept has a data table with threeolumns, the �rst ontaining integers, and the seond and third ontainingsubobjets of type \divisor".HR also needs to be given information about whih objet and subobjettypes an be onsidered the same for mathing purposes. For example, thenodes of a graph are a di�erent type of objet from the edges of a graph, so



5.2 Required Information about Conepts 61there is no point looking for nodes whih are also edges. However, while thedivisors of an integer I are a di�erent subobjet type from the digits, theyare both just numbers assoiated with I , and it may be worth looking for adivisor whih is also a digit. In pratie for the theories we disuss here, thisinformation only amounts to stating that integers, their digits and divisorsand any oeÆient alulated during theory formation an be mathed.Conept formation proeeds by manipulating old data tables to produenew ones. HR needs to be able to generate a de�nition when required. As ev-ery de�nition is built from the de�nitions of the parent onepts, de�nitionsof the initial onepts must be supplied. As disussed in the previous hapter,HR needs to generate de�nitions in (a) a style aeptable to the Otter the-orem prover and (b) a Prolog style. Eah initial onept should therefore besupplied with a de�nition in Otter syntax and a seond de�nition in SistusProlog syntax.The Prolog de�nition for the deomposition (subobjet) onepts mustbe able to (i) hek whether, given an entity and a subobjet, the subobjetis produed by the deomposition and (ii) deompose a given entity into theentire set of subobjets, e.g. given an integer, produe all its divisors. So, forexample, HR is supplied with the following Prolog de�nition for the oneptof divisors of integers:prediate(2,[I,D1℄) :-length(L,I), nth(D1,L,_), 0 is I mod D1.To larify, in the (Sistus) Prolog length(A,B) prediate, B is generatedas the length of list A, and the nth(A,B,C) prediate is true if C is the Athelement of list B, but Sistus will also generate the elements of B throughbaktraking. Hene prediate/2 an hek whether D1 is a divisor of Iand an also generate all suh divisors by generating the integers less thanor equal to I and keeping those whih divide it. The head of this prediateindiates that it is the de�nition for onept number 2, whih is a propertyof integers I and divisors D1. The hoie of the word prediate is arbitrary,but all Prolog de�nitions { whether given by the user or generated by HR {must have the same word for the head as this word will be used in the bodiesof later prediates.HR also requires Prolog ode to generate the entities themselves, andthis is provided as the de�nition for the onept of the entities. The Prologde�nition for a relation onept only has to hek that any tuple given to itsatis�es the relation { there is no need for it to do any generation, as thisan be done by the ode for the subobjets appearing in the relation. Notethat all prediates need to fail if the tuple they are given does not satisfy theriteria of the onept.To summarise, for HR to use all the failities available to it, for everyinitial onept the following information must be supplied:



62 5. Bakground Knowledge� A data table of examples.� The types of the objets in the olumns of the data table.� An Otter style de�nition.� A Prolog de�nition.The user must also speify whih types of subobjets an be onsidered thesame for mathing purposes.It is possible to provide less information for eah onept, whih willompromise HR's abilities, but may not be fatal to the theory formationproess. For instane, if no Prolog de�nitions are provided, then a theory anstill be formed, but HR will not be able to generate ounterexamples itself(as disussed in x8.3.2).5.3 Initial Conepts from the UserTo date, we have hosen to give HR only the most fundamental onepts ofa domain. This enables us to study the prodution of a theory from the bareminimum of knowledge, whih is an interesting problem. However, HR ouldbe supplied with many more initial onepts whih ould be simple or haveompliated de�nitions. This would have an appliation to disovery tasks {where onjetures about a onept C of interest to the user are found via the-ory formation starting with C and possibly other onepts. The appliationto disovery tasks is only a seondary aim of this projet and we have not yetexplored the possibility of giving HR more detailed bakground information.We present below the fundamental onepts in graph theory, number theoryand group theory whih HR is given as bakground information.5.3.1 Initial Conepts in Graph TheoryIn graph theory, we usually supply four initial onepts, namely the oneptof a graph, the deompositions of a graph into nodes and edges and therelation of a node being found on an edge:1. [G℄ : graph(G)2. [G;n℄ : node(n)3. [G; e℄ : edge(e)4. [G; e; n℄ : n is on eNote that we have not provided the onept of two nodes being related if theyare adjaent, whih is also a fundamental of graph theory. This is beausethe notion of adjaeny is usually one of the �rst onepts generated by theompose prodution rule (see x6.7). We have labelled the nodes and edges ofthe three graphs in Figure 5.1 as they are labelled when given to HR, and wepresent the data tables for these graphs in Figure 5.2.



5.3 Initial Conepts from the User 63
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Figure 5.1 Three example graphs
1 (Graphs)graphG2.1G3.1G4.1

2 (Nodes)graph nodeG2.1 aG2.1 bG3.1 aG3.1 bG3.1 G3.1 dG4.1 aG4.1 bG4.1 G4.1 d
3 (Edges)graph edgeG2.1 1G3.1 1G3.1 2G3.1 3G4.1 1G4.1 2G4.1 3G4.1 4

4 (Loation of Nodes)graph edge nodeG2.1 1 aG2.1 1 bG3.1 1 aG3.1 1 bG3.1 2 bG3.1 2 G3.1 3 bG3.1 3 dG4.1 1 aG4.1 1 bG4.1 2 bG4.1 2 dG4.1 3 G4.1 3 dG4.1 4 aG4.1 4 Figure 5.2 Graphs represented as data tables5.3.2 Initial Conepts in Number TheoryIn number theory, the objets of interest are the natural numbers (positiveintegers). We use three deompositions: into divisors, digits and smaller (pos-itive) numbers. We also supply the relations of multipliation and addition.We provide multipliation as it is entral in number theory and HR annotderive it in terms of repeated addition.The initial onepts we supply in number theory are therefore hosen fromthese:1. [I ℄ : integer(I)2. [I; d1℄ : d1jI3. [I; dig1℄ : dig1 2 digits(I)4. [I; a℄ : a � I5. [I; d1; d2℄ : d1jI & d2jI & I = d1� d26. [I; a; b℄ : a � I & b � I & a+ b = IThe notation d1jI indiates that d1 divides I . Note that in onept 5, thesubobjets are divisors, and in onept 6 the subobjets are smaller integers.



64 5. Bakground KnowledgeOften we restrit HR to working only with onepts 1, 2 and 5. If we hoseto start HR with all six of these initial onepts for the integers 1 to 4, thedata tables would be as in Figure 5.3.1 (Integers)integer1234
2 (Divisors)integer divisor1 12 12 23 13 34 14 24 4

3 (Digits)integer digit1 12 23 34 44 (Leq)integer leq1 12 12 23 13 23 34 14 24 34 4
5 (Multipliation)integer divisor divisor1 1 12 1 22 2 13 1 33 3 14 1 44 2 24 4 1

6 (Addition)integer leq leq2 1 13 1 23 2 14 1 34 2 24 3 1Figure 5.3 Integers represented as data tables5.3.3 Initial Conepts in Finite Algebrai SystemsWhen working with �nite algebrai systems, the only deomposition we dealwith is into elements, and the �rst two onepts we provide are the oneptof the algebrai system and the onept of an element of the algebrai sys-tem. The hoie of initial onepts whih relate the elements is determinedby the axioms, and we follow the rule of giving HR a onept if it is expli-itly mentioned in the axioms. For example, in group theory, the standardaxiomatisation is in terms of the assoiativity, inverse and identity axioms.The group multipliation onept is essential to the statement of the axioms,and the onepts of an identity element and the inverse of an element arealso expliitly mentioned. Therefore, while it is possible for HR to onstruta theory of groups with just the deomposition into elements and the groupoperation, we also provide it with the onepts of identity elements and theinverse of elements. In pratie, if we don't provide these onepts, HR re-



5.3 Initial Conepts from the User 65invents them and an sometimes give them ompliated de�nitions whihmay onfuse matters.HR usually starts with the groups up to order 6, but to simplify thispresentation, suppose it is given the groups up to order 3 as in Figure 5.4.The data tables for these groups would then be as in Figure 5.5.C1 00 0 C2 0 10 0 11 1 0 C3 0 1 20 0 1 21 1 2 02 2 0 1Figure 5.4 Multipliation tables for the groups up to order 3
1 (Group)groupC1C2C3 2 (Element)group elementC1 0C2 0C2 1C3 0C3 1C3 2 3 (Identity)group elementC1 0C2 0C3 0

4 (Inverse)group element elementC1 0 0C2 0 0C2 1 1C3 0 0C3 1 2C3 2 1
5 (Multipliation)group element element elementC1 0 0 0C2 0 0 0C2 0 1 1C2 1 0 1C2 1 1 0C3 0 0 0C3 0 1 1C3 0 2 2C3 1 0 1C3 1 1 2C3 1 2 0C3 2 0 2C3 2 1 0C3 2 2 1Figure 5.5 Initial data tables in group theory



66 5. Bakground Knowledge5.4 Generating Initial Conepts from AxiomsWhile users are free to supply any initial onepts, when working in a �nitealgebrai system, they an use HR by supplying just the axioms of the theory.The axioms are passed to the MACE model generator whih is asked toprodue an example of size 1. If this fails, MACE is given 10 seonds toprodue an example of size 2 and so on, until size 8, after whih it is unlikelythat MACE will sueed (based on our experiene of running MACE forsearhes of 10 seonds). If MACE annot �nd an example, then one must besupplied by the user, along with the initial onepts as disussed in x5.3.3.As an example, when working in group theory, the user needs only tosupply the assoiativity, identity and inverse axioms in MACE's format. Fromthese, MACE generates an example of size 1 and produes this output:* : id: 0 inv :| 0 0--+-- -----0 | 0 0We see that MACE has extrated the ore onepts of group theory, namelythe multipliation operation, *, the identity element, id, and the inversefuntion, inv. We have enabled HR to read MACE's output so that it anbuild the data tables and de�nitions for any onepts extrated from theaxioms by MACE. In group theory, HR reads these onepts from MACE:1. [G; a; b; ℄ : a � b =  2. [G; a℄ : a = id3. [G; a; b℄ : b = inv(a)HR adds two other onepts to this set, namely the onept of a group andthe onept of an element in a group:4. [G℄ : group(G) 5. [G; a℄ : a 2 GHene, between them, HR and MACE have generated the same initial on-epts that the user supplies (see x5.3.3). However, HR will start with onlyone entity. As disussed in x8.3.1, HR will use MACE to introdue moreentities as it proeeds. Note �nally that the �rst example MACE omes upwith may not neessarily be the trivial algebra (with one element). For exam-ple, as disussed in x12.2, we have worked with the algebrai system whereno triples are assoiative, i.e. algebras where there is a single axiom statingthat: 8 a; b;  (a � b) �  6= a � (b � ). In this ase, there must be at least twoelements, and the �rst example MACE �nds is the following:0 10 1 01 1 0



5.5 Summary 675.5 SummaryThe hoie of initial onepts will have a profound e�et on the nature of thetheory produed, beause new onepts will be based on them and all onje-tures, theorems and proofs will involve them to some extent. Unfortunately,we have not had time to experiment with giving HR many initial onepts.Instead, we have restrited the bakground information to just the funda-mental onepts, suh as divisors in number theory and nodes and edges ingraph theory. In the ase of �nite algebrai systems, HR an form a theoryfrom just the axioms of the algebrai system. This has allowed us to studyhow a rih theory ontaining onepts, examples, onjetures, theorem andproofs an be formed in a bootstrapping manner { from only the fundamentalonepts of a domain.





6. Inventing Conepts
0, 1, 0, 1, 1, 0, 2, 0, 1, 1, 0, 2, 1, 1, 1, 0, 0, 2, 2, 0, 2, 0, 0, 1, 2, 2, : : :A036431. f(n) = jfm : m+ �(m) = ngjThe purpose of forming a theory is to understand fundamental onepts suhas numbers, groups or graphs. At the heart of any mathematial theory arethe onepts it disusses. Every onjeture involves onepts and every theo-rem provides a greater understanding of these onepts. An ability to inventnew onepts is essential in theory formation, as it enables the program toexplore new areas of the domain and make onjetures onneting di�erentaspets of the theory.As disussed in x4.2, one way to invent new onepts is to take someprevious onepts and design a new one based on them. We have modelledthis tehnique in HR. Having determined what bakground information issupplied, we an desribe how HR turns a few initial onepts into a multitudeof new ones. We have provided HR with a set of seven prodution rules whihtake either one or two old onepts as input and output a single new onept.In [Rithie 01℄ and [Colton et al. 01b℄, Graeme Rithie et al. desribe howreative programs are often onstruted in the light of \inspiring onepts."Eah prodution rule in HR has been inspired in some way by onepts fromthe mathematial literature. Moreover, we have progressed by identifying ageneral property shared by a sizeable number of onepts from more thanone domain and writing a prodution rule to take a onept without thisproperty and produe one with it.In x6.1 we give an overview of the prodution rules, inluding some om-mon onstrution tehniques whih they share. We follow this with a setiondevoted to eah rule. For eah prodution rule, we desribe how it hoosesparameterisations for the rule, how it builds data tables, and how it on-struts de�nitions for the onepts produed. To omplete the disussion ofthe prodution rules, in setion x6.9 we desribe some eÆieny and sound-ness onsiderations for onept formation of this nature. Finally, in x6.10,we illustrate how HR produes new onepts with onstrutions of some wellknown onepts from group theory, graph theory and number theory.



70 6. Inventing Conepts6.1 An Overview of the Prodution RulesEah prodution rule performs a generi onstrution whih results in a newonept being built from old ones. The prodution rules are designed to beas general as possible, and eah one an be used in any of the domains inwhih HR works. There are two prodution rules whih take two onepts asinput, and we all these binary prodution rules. There are �ve produtionrules whih take one onept as input, and we all these unary produtionrules. The set of rules is not meant to be exhaustive and it is expeted thatnew ones will be added in future to enhane HR's apabilities.As disussed in x5.2, eah prodution rule must be able to produe all therequired information about a new onept, whih is (i) a data table, (ii) thetypes of the olumns, (iii) an Otter de�nition and (iv) a Prolog de�nition.We desribe below how eah one produes all of this new information.All Prolog de�nitions are generated in the same format, where the head isthe word `prediate' with two inputs, namely the onept number and a listwhih should be instantiated with the tuple to be tested by the prediate.The body of the prediate is ode whih tests whether the tuple satis�es theriteria of the onept. i.e. all Prolog de�nitions will be of the form:prediate(n,[t1,t2,...℄) :- p1(t1,t2,...), p2(t1,t2,...), ...Eah prodution rule an perform one of many similar onstrutions ona given old onept, so eah onstrution is guided by a parameterisationwhih determines exatly how the operation is to be arried out. For anygiven onept, the prodution rule itself must determine the set of parame-terisations possible. So, as well as being able to generate information aboutthe onepts it has produed, eah prodution rule also determines in whihsituations it an be applied. For eah prodution rule desribed below, welook at the set of parameterisations it generates for a generi onept. Ofourse, for a partiular prodution rule and onept, if no parameterisationis possible then no onstrution an our. All parameterisations are writtenh a1; : : : ; an i where eah ai may be a number or a list of numbers.Eah prodution rule is apable of many tasks and muh of HR's fun-tionality is ontained within the algorithms whih make up the produtionrules. In the examples given for eah prodution rule below, we mainly usenumber theory onepts as input to the prodution rules, as these are usuallyeasier to understand than onepts from group theory or graph theory. Theexample onepts are taken from a theory of numbers where the integers 1to 10 are present. New onepts are numbered inrementally, but the atualhoie of number is immaterial. The prodution rules are presented in roughlyinreasing order of the omplexity of the onstrutions they perform.



6.1 An Overview of the Prodution Rules 716.1.1 Some Common Constrution TehniquesIn the following setions, we shall desribe how old data tables are turned intonew ones. The parameterisations for some of the prodution rules are simplya set of olumn numbers and the onstrution will involve those olumns fromthe old data table. For example, parameterisation h 1; 3 i for a produtionrule will mean that olumns 1 and 3 from the data table for the old oneptwill be used somehow in the onstrution. Some of the onstrutions startand end in a similar manner, and we disuss here some tehniques whih areommon in the prodution rules.Firstly, when olumns are removed (i.e. projetion), this an often leavea data table with dupliate rows, and the removal of the repeated rows is aommon tehnique. For example, if at the end of a onstrution, this was theresulting data table: Exampleinteger divisor1 12 12 22 23 33 3then the repeated rows would be removed as they are redundant. In this ase,rows 4 and 6 would be removed, resulting in this table:Exampleinteger divisor1 12 12 23 3Every data table onstrution ends by �rst removing repeated rows, thenthe rows of the data table are sorted into lexiographial order. Knowingthat every data table is in lexiographial order improves eÆieny when HRheks whether one data table is the same as another (as disussed later inx7.1.1).Another ommon onstrution is to partition a data table into two sep-arate data tables based on the olumns spei�ed in the parameterisation.To do this, given parameterisation h 1; 2; : : : ; i i, HR looks at every rowof the data table and makes new tuples by keeping the entries in olumns1; 2; : : : ; i and disarding the entries in the other olumns. We all thesetuples the objet tuples of the onstrution step and the data table the



72 6. Inventing Coneptsobjet data table. The olumns not spei�ed by the parameterisation arealso extrated into a separate data table (hene the partition of the datatable). This seond data table is sometimes used, but is often disarded.For example, given this data table:Exampleinteger divisor divisor6 1 16 2 26 3 26 6 3with parameterisation h 1; 3 i, the objet tuples will be:f(6; 1); (6; 2); (6; 2); (6; 3)gas these are the tuples made by taking olumns 1 and 3 from eah row. Notethat suh a onstrution an result in a data table with repeated rows, sothe partition onstrution always ends with the removal of redundant rowsas disussed above. After the removal of repeated rows, the objet data tablein this ase would be: Exampleinteger divisor6 16 26 3Note that no onstrution is allowed to remove the �rst olumn of a data tableas the output onept would break the general format we have presribed inChapter 4, namely having entities in the �rst olumn with subobjets in theother olumns.Finally, it is important to note the interplay between the de�nitions andthe data tables of onepts. Firstly, every olumn in the data table has anassoiated letter (or variable) in the de�nition. The letter represents thesubobjets whih an appear in that olumn, and so it is lear when thede�nitions are read whih subobjets have whih properties. Therefore if aonstrution involves a partiular olumn of a data table, then the hange inthe de�nition will involve the letter assoiated with that olumn. Seondly,HR reords the type of the subobjets in the olumns of eah data table.Then, beause eah type is itself a onept, HR an retrieve the de�nition forthe subobjet types, whih is important as they often appear in the de�nitionfor new onepts.



6.2 The Exists Prodution Rule 736.2 The Exists Prodution RuleThe exists prodution rule is so alled beause the de�nitions of oneptsprodued by it have existential quanti�ers added. In e�et, this rule produesa summary of the previous onept by hanging statements about onretevalues to statements that suh values exist. Conepts with an existentialquanti�ation are ubiquitous in mathematis, for example, yli groups arethose for whih there exists an element of order equal to the size of the group.6.2.1 Data Table Constrution and ParameterisationsThis prodution rule is parameterised by a set of olumn numbers. The ationit performs is simply to produe the objet data table for those olumns. Theonly restritions on the parameterisations are:� At least one olumn must be removed, otherwise the onept output willbe the same as the one whih was input.� The entity olumn (olumn 1) must not be removed, for reasons givenabove.For example, suppose we start with the onept of even divisors of an integer:9. [I; d1℄ : d1jI & 2jd1The notation d1jI indiates that integer d1 divides I (so is a divisor of I) andthe notation 2jd1 indiates that 2 divides d1, so d1 is an even number. Usingthe parameters h 1 i, whih tell the prodution rule to keep the �rst olumnof the table, the data table for the new onept is produed in two stages:9. Inputinteger divisor2 24 24 46 26 68 28 48 810 210 10
-

Intermediateinteger244668881010
- 10. Outputinteger246810existsh 1 i -



74 6. Inventing ConeptsThe �rst stage of the transformation removes any olumns not spei�ed inthe parameters, and the seond stage removes repeated rows. In this example,a table ontaining the even numbers between 1 and 10 has been produed.In pratie when this happens, HR makes the onjeture that the outputonept is the same onept as even numbers, i.e. a number is even if andonly if it has an even divisor.6.2.2 Generation of De�nitionsConstruting the de�nitions is more involved than onstruting the data ta-bles. Suppose the input onept had this general de�nition:[a1; a2; : : : ; an℄ : P (a1; a2; : : : ; an)Using the parameterisation h x1; x2; : : : ; xi i, HR �rst onstruts this list ofletters: fay1 ; ay2 ; : : : ; ayn�ig = fa1; : : : ; ang=fax1 ; : : : ; axigThus ay1 ; ay2 , et. are the letters for olumns whih are to be removed. Thede�nition is then transformed in the following way:[a1; : : : ; an℄ : P (a1; : : : ; an)exists ?h x1; : : : ; xn i[ax1 ; : : : ; axi ℄ : exists ay1 ; : : : ; ayn�i (P (a1; : : : ; an))To make this syntax aeptable to Otter, HR omits the ommas between theexistential variables. For example, this group theory de�nition is in Ottersyntax:exists a b  (a*b =  & b*a = ).We an help explain the generation of de�nitions with examples. Firstly, theonept above of even divisors has its de�nition transformed in the followingway: 9: [I; d1℄ : d1jI & 2jdexists ?h 1 i10: [I ℄ : exists d1 (d1jI & 2jd1)More than one olumn an be removed using this rule. In the following ex-ample, we start with the onept of pairs of divisors of an integer whih donot multiply to give the integer. Passing this through the exists produtionrule with parameters h 1 i produes the onept of integers with suh a pairof divisors:



6.2 The Exists Prodution Rule 7511: [I; d1; d2℄ : d1jI & d2jI & � (d1� d2 = I)exists ?h 1 i12: [I ℄ : exists d1 d2 (d1jI & d2jI & � (d1� d2 = I))In pratie, this onept turns out to be equivalent to omposite numbers(those whih are divisible by two or more primes).When deriving the Prolog de�nition for onepts produed using the ex-ists rule, HR relies on the fat that the user has given ode whih an generateall the subobjets for a given entity (a requirement disussed in x5.2). Thenew prediate must hek whether there is a subobjet (or pair, triple, et.of subobjets) whih �ts the old de�nition for the given input. To do this,the new prediate generates subobjets until it �nds one whih satis�es theprevious prediate. A more eÆient alternative may be to write the Prologde�nitions using onstraints to be interpreted by the Sistus onstraints pak-age. However, we have not su�ered any eÆieny problems resulting from theinterpretation of the Prolog de�nitions and we have not had time to pursuethis alternative.To generate the body of the new prediate, for every olumn that is re-moved, the prediate for the onept orresponding to the type of subobjetin the olumn is added to the body of the new de�nition. Then, after allthe olumn prediates have been added, the prediate for the old oneptis added. For instane, the head of the prediate for onept 12 above isgenerated as:prediate(12,[I℄) :-Following this, the prediates for the subobjet onepts orresponding tothe removed olumns are added. In this ase, two divisor olumns havebeen removed. Divisors are onept number 2 in the theory, so the odeprediate(2,[I,D℄)must be used twie to generate two divisors, all themD1 and D2. These are added to give:prediate(12,[I℄) :-prediate(2,[I,D1℄),prediate(2,[I,D2℄),The prediate for onept 12 is ompleted by taking D1 and D2 and puttingthem into the prediate for the old onept (number 11). This produes the�nished Prolog de�nition:prediate(12,[I,D1℄) :-prediate(2,[I,D1℄),prediate(2,[I,D2℄),prediate(11,[I,D1,D2℄).



76 6. Inventing ConeptsThis generates two divisors using prediate 2, namely D1 and D2, thenheks whether prediate 11 is satis�ed by I, D1 and D2. Conept 2 is adeomposition onept, so it has a de�nition supplied by the user whihwill generate all divisors of I through baktraking. Hene if there are suhdivisors, they will be found.6.3 The Math Prodution RuleThe math prodution rule speialises onepts by �nding ourrenes wherethe tuples with the property spei�ed by the old onept have equal entries. Amotivating example for the introdution of this prodution rule is the oneptof square numbers, where the prediate is multipliation, and the subobjetsare two divisors whih are equal, i.e. the speialisation of multipliation,a� b to the ase where a = b. Other motivating examples inlude self-inverseelements in group theory and loops in graph theory { where a node is adjaentto itself.6.3.1 Data Table Constrution and ParameterisationsThe onstrution here extrats those rows from the input data table wherethe entries in ertain olumns are equal. Exatly whih olumns must beequal is spei�ed by the parameterisation. Beause the olumns are equal,one the rows have been extrated, mathing olumns are removed so thatonly one opy of eah dupliate olumn is kept.HR will not allow olumns with essentially di�erent types to be mathed,i.e. it will not attempt to math a \group" olumn with an \element" olumn,or a \node" olumn with an \edge" olumn in a graph theory table andso on. However, if the user spei�es that, say, divisors of an integer, digitsof an integer and integers themselves are essentially of the same type (asdisussed in x5.2), then HR will math olumns with these types. The onlyother restritions to the parameterisations is that at least two olumns aremathed.The parameters are presented as a tuple h 1; 2; : : : ; n i where n is thearity of the onept. These parameters are to be read in the following way:olumn 1 must math olumn 1, olumn 2 must math olumn 2 and so on.For example, the parameters h 1; 2; 2 i state that the entry in olumn 1 shouldbe the same as olumn 1, the entry in olumn 2 should be as in olumn 2,and the entry in olumn 3 should also be the same as that in olumn 2. i.e.this states that the last two olumns must be equal.For example, passing the data table for the multipliation of pairs ofdivisors of an integer through the math prodution rule with parametersh 1; 2; 2 i produes the onept of perfet squares and their integer squareroots:



6.3 The Math Prodution Rule 775. Inputint. div. div.1 1 12 1 22 2 13 1 33 3 14 1 44 2 24 4 1... ... ...10 1 1010 2 510 5 210 10 1
- Intermediateint. div. div.1 1 14 2 29 3 3 - 13. Outputint. div.1 14 29 3

mathh 1; 2; 2 i -We see that this onstrution is a two step proess, where the rows withmathing olumns are extrated, then the repeated olumns are disarded.6.3.2 Generation of De�nitionsPresenting the parameterisation in the way presribed makes it easy to deter-mine whih is the �rst olumn that others should math with. For example,in parameterisation h 1; 2; 2; 2 i the third and fourth olumns both mathwith olumn 2. With this information, it is possible to produe an Otterstyle de�nition by replaing letters with the ones they are suppose to mathwith in the old de�nition. For instane, if the parameterisation is h 1; 2; 2 i,the letter for variable 3 is replaed with the letter for variable 2. Using theseparameters with the de�nition for multipliation produes a new de�nitionthus: 5: [I; d1; d2℄ : d1� d2 = Imath ?h 1; 2; 2 i13: [I; d1℄ : d1� d1 = IWe see that letter d2 has been replaed by d1 in the body of the de�nition,beause d2 orresponded to the olumn whih was mathed with the olumnorresponding to variable d1.



78 6. Inventing ConeptsChanging the Prolog de�nition is similarly straightforward: the body ofthe new prediate ontains the head of the previous prediate but with ap-propriate letters mathed. So, for example, the Prolog de�nition for onept13 is the following:prediate(13,[I,D1℄) :-prediate(5,[I,D1,D1℄).If we follow this math onstrution with an exists step we get the onept ofsquare numbers, i.e. those integers, n, where there is a divisor, d, suh thatd� d = n.6.4 The Negate Prodution RuleThe negate prodution rule was so named originally beause the de�nitions itprodues inlude the negation of previous de�nitions. It is more aurate todesribe its funtionality as �nding the omplement of a onept, as it �ndsthose tuples with a partiular general property, but whih do not satisfy theprediate of the input onept. This has been inspired by onepts suh asnon-squares, non-entral elements in groups and losed graphs { whih haveno endpoints.6.4.1 Data Table Constrution and ParameterisationsFinding omplements an be ahieved beause HR works with �nite deom-positions and we ensure that every data table is omplete. That is, for everyentity in the left hand olumn of a data table, the set of tuples found in theother olumns will be omplete. Moreover, these tuples will be taken from alarger, but still �nite set of possible tuples (e.g. the set of prime divisors isa subset of the set of divisors). The negate prodution rule onstruts everytuple whih satis�es the orret types in the olumns of the old data tablebut whih does not atually appear. This requires no parameterisation.For example, starting with the onept of square numbers, the negate rule�rst �nds the data table for the onept whih desribes the type of entitieswhih squares are. In this ase, it would retrieve the data table of integers.It would then extrat those integers whih are not present in the data tablefor squares: i.e. those in bold fae in the intermediate table below:



6.4 The Negate Prodution Rule 79
14. Inputinteger149 -

1. Integersinteger12345678910
- 15. Outputinteger23567810negateh i -As well as �nding omplements of sets of entities, the negate prodution rulealso �nds omplements of sets of subobjets. For example, given the oneptof even divisors, it an onstrut the onept of odd divisors thus:16. Inputinteger divisor2 24 24 46 26 68 28 48 810 210 10

-
2. Divisorsinteger divisor1 12 12 23 13 34 14 24 45 15 5... ...10 510 10

-
17. Outputinteger divisor1 12 13 13 34 15 15 5... ...10 110 5negateh i -6.4.2 Generation of De�nitionsOtter uses the minus sign to negate statements and HR follows this onven-tion. To generate Otter style de�nitions for onepts produed by the negateprodution rule, HR takes the de�nition of the previous onept, puts brak-ets around it, and plaes a minus sign in front of all this. For example, given



80 6. Inventing Coneptsthe de�nition of the onept of even divisors, it generates the de�nition forodd divisors in the following manner:16: [I; d1℄ : d1jI & 2jd1negate ?h i17: [I; d1℄ : �(d1jI & 2jd1)This may ause a little onfusion beause the fat that d1 is a divisor isalso negated, when in fat d1 must be a divisor. In pratie, we haven't foundthis a problem, for two reasons. Firstly, Otter is only used in �nite algebraisystems where every subobjet is assumed to be an element of the algebraisystem. There is no way to supply statements of the form a 2 G, so thesestatements are never negated and the problem does not arise. Seondly { asdisussed in x4.4.2 { eah subobjet type is assigned a di�erent letter to writeits variables with. For example, divisors are always written d1; d2, et., digitsare written dig1; dig2, et. This way, the user understands that statementssuh as �(dig1jn) are disussing a digit of n whih doesn't divide it. We donot need to speify that dig1 is a digit of n. HR ould be improved by foringit to write out the de�nition for eah subobjet type and only negating theorret parts of onjuntions. We have addressed this problem in the latestJava version of HR disussed in Chapter 14, but not in the version of HRdisussed in this book.While it is possible to omit information about the subobjet types inthe Otter de�nitions, we annot with the Prolog de�nitions. The subobjetsinput to the new prediate must be of the same type as those input to theold prediate, but they must fail the previous prediate. Therefore we annotsimply put the Prolog negation sign (\+) in front of the previous prediateto indiate that the old prediate should fail if the new one is to sueed. Forexample, this de�nition for onept 17 (odd divisors) would return true forI = 6 and D1 = 4 beause 4 is not an even divisor of 6 (as it is not a divisorof 6 at all):prediate(17,[I,D1℄) :-\+ prediate(16,[I,D1℄).This does not math with the data tables whih are produed. Thus,before the negation of the old de�nition, we must ensure that the input sub-objets are of the orret type. Thus, for every olumn of the new data table,the Prolog de�nition for new onepts �rst heks that the orrespondinginput satis�es the prediate of the subobjet for that olumn. For example,onept 17 above is given the following de�nition:prediate(17,[I,D1℄) :-prediate(2,[D1℄),\+ prediate(16,[I,D1℄).



6.5 The Size Prodution Rule 81This heks that D1 is indeed a divisor before it heks whether it fails theprevious prediate. A similar method for produing Otter de�nitions wouldbe an improvement, but we have not had time to implement it and it has notbeen a priority as no problems have arisen in interpreting the de�nitions.6.5 The Size Prodution RuleThis prodution rule ounts the number of tuples of subobjets whih satisfythe de�nition of an input onept. That is, it alulates the size of a set ofsubobjet tuples. We were motivated by onepts suh as the � funtion innumber theory, whih ounts the number of divisors of the input integer, andthe order of a group (number of elements).6.5.1 Data Table Constrution and ParameterisationAs with the exists prodution rule, the parameterisations for this rule speifya set of olumns. For every di�erent objet tuple appearing in those olumns,the number of times that tuple appears is ounted. To do this, HR �rst�nds the objet data table for the given olumns, but before disarding therepeated rows, it reords how many times the row is present. This number isthen added as an additional olumn to the objet tuple to produe the tuplesfor the new data table.For example, given the onept of the divisors of an integer, the sizeprodution rule an be used to onstrut the � funtion thus:2. Inputinteger divisor1 12 12 23 13 3... ...10 110 210 510 10
-

Intermediateinteger12233444...10
-

18. Outputinteger number1 12 23 24 35 26 47 28 49 310 4sizeh 1 i -To indiate that a set size has been alulated, HR reords the type of the �nalolumn as \number". This rule outputs onepts whih are funtions, taking



82 6. Inventing Coneptsentities and subobjets as input and outputting a number. It is important tonote that it is a partial funtion, whih only ounts the sizes of non-emptysets. Therefore, for entities whih have no subobjets of a partiular type, thedata table will not ontain a row for them with a zero, there will simply beno mention of the entity. This is another area for improvement, as disussedin x6.9. Note that, for mathing purposes, HR knows that objets of type\number" are essentially the same as integers, divisors and digits.6.5.2 Generation of De�nitionsConjetures involving onepts made using this rule are not passed to Ot-ter, as Otter annot work with numerial onepts. However, a de�nition isrequired for the user. Given letters a1; : : : ; an for the de�nition of the inputonept, a new de�nition is generated by:[1℄ Identifying the letters b1; : : : ; bi 2 fa1; : : : ang for the olumns whih havebeen removed.[2℄ Writing the set: f(b1; : : : ; bi) : P (a1; : : : ; an)g, where P is the prediate forthe previous onept.[3℄ Introduing a new letter, say n, to stand for the size of the set.[4℄ Putting it all together using the standard set size notation:n = jf(b1; : : : ; bi) : P (a1; : : : ; an)gjNote that the notation n = jf(a; b; : : :) : P (a; b; : : :)gj indiates that thenumber of tuples (a; b; : : :) whih satisfy prediate P has been ounted and nis this number. For example, the de�nition for the � funtion is onstrutedin the following manner:2: [I; d1℄ : d1jI size-h 1 i 18: [I; n℄ : n = jfd1 : d1jIgjWe explained above that the size prodution rule produes partial fun-tions. Hene a more aurate de�nition for onept 18 would be:18. [I; n℄ : 9 d1 s.t. d1jI & n = jfd2 : d2jIgjHowever, the user is expeted to assume that any funtion produed by thesize prodution rule is in fat a partial funtion. This doesn't e�et Otter'sperformane as onepts of this nature are not passed to Otter. Again, wehave addressed this problem in the latest Java version of HR, but not in theProlog version of HR disussed in this book.The fat that the funtions produed are partial must feature in the Pro-log de�nition. To produe the Prolog de�nition, HR uses the Prolog findallfuntion to ollate the set of subobjets satisfying the old prediate, then dis-ards any dupliates with the Prolog remove_dupliates funtion. Finally,



6.5 The Size Prodution Rule 83the Prolog length funtion is used to �nd the size of the resulting set. Forexample, given that prediate 2 generates the divisors, D1, of an input integerI, this is the de�nition HR produes for onept 18:prediate(18,[I,N℄) :-findall([D1℄,prediate(2,[I,D1℄),TuplesA),remove_dupliates(TuplesA,Tuples),length(Tuples,N),N > 0.The last line of this de�nition is inluded to ensure that the funtionis partial, so the prediate will fail, and not return 0, when asked to ountempty sets.It is desirable that the numbers introdued are thought of as subobjets ofthe entity they are alulated for. For example, for every node in a graph, itsweight an be alulated as the number of edges it is on. HR an then use theexists prodution rule to remove the olumn ontaining the nodes themselves,leaving only the distint weights. This onept an then be thought of as adeomposition of the graphs { into a set of numbers (weights of nodes) { andHR an use these weights as subobjets of the graph to build new oneptsaordingly. For instane, it is interesting to use the size rule one more toprodue the onept of the number of di�erent weights in a graph { a wellknown graph theory onept.As disussed in x5.2, all user-given deomposition onepts are suppliedwith a piee of Prolog ode whih enables all subobjets for a given entity tobe generated. The writing of further Prolog de�nitions relies on this de�ni-tion. Therefore, to use a onept produed by the size rule as a deompositiononept, HR also produes a de�nition able to generate all the oeÆientsfor a partiular entity. The Prolog ode is onstruted using the ode for thegeneration of the subobjets whih are ounted.Using the example from graph theory just mentioned, suppose that on-ept 19 has been onstruted using the size rule and ounts the number ofedges that a node is on (its weight):19. [G;n1; N ℄ : N = jfe1 : n1 is on e1gjIt may beome neessary later on to use these weights as subobjets them-selves, so HR needs some Prolog ode able to generate all the weights for agiven graph without being given the nodes themselves. When it produes theprediate de�nition for onept 19, HR also generates this ode:generate_number(19, [A,B℄) :-prediate(1, [A℄),findall(C, (prediate(2,[A,D℄),prediate(19,[A,D,C℄)), E),sort(E, F),member(B, F).



84 6. Inventing ConeptsThis �rst heks that the entity supplied is a graph (prediate 1), thenuses prediate 2 to generate all nodes and prediate 19 to alulate theirweights. The set of weights are then sorted and output in turn through bak-traking when the generate number prediate is alled. If a later oneptneeds to generate all node weights, this generate number prediate is usedin its Prolog de�nition.6.6 The Split Prodution RuleThis rule produes onepts where a variable is �xed to a partiular value.A motivating example for the introdution of this rule is the onept ofprime numbers, where the number of divisors is exatly 2. We ould equallyonstrut the onept of numbers with exatly 3 divisors. This kind of on-strution is ubiquitous in mathematial literature, e.g. symmetri groups haveexatly one entral element. This rule splits the input data table into sub-tables, one for eah value whih is �xed, hene its name.6.6.1 Data Table Constrution and ParameterisationsThe onstrution looks through the input data table and extrats rows wherethe entries in ertain olumns are partiular values. The parameterisationspei�es both the olumns to look in and the values to look for. The onlyonstraint on the parameterisation is that there must be at least one row withthe values found in the orret olumns { otherwise the data table produedwould be empty. Therefore, to generate the parameterisations for this rule,HR �rst looks through the data table. It then generates parameterisations aspairs of lists, the �rst list ontaining olumns and the seond one ontainingvalues.Purely for improved presentation, we insert an equals sign to show thatthe olumns in the left hand list must ontain the values in the right handlist. For example, this parameterisation:h [1; 3℄ = [7; 9℄ iinstruts the prodution rule to extrat rows where olumn 1 ontains thenumber 7 and olumn 3 ontains the number 9.One the rows have been onstruted, the olumns in the parameterisationare removed, as we know exatly what they ontain. As an example, if westart with the data table for the � funtion (onept 18 above), and speifyparameters h [2℄ = [2℄ i, this will extrat rows where the seond olumn istwo (i.e. those integers whih have 2 divisors { prime numbers). Note thatfor improved presentation again, we shorten our notation from h [2℄ = [2℄ ito h 2 = 2 i.



6.6 The Split Prodution Rule 8518. (Input)integer number1 12 23 24 35 26 47 28 49 310 4
- Intermediateinteger number2 23 25 27 2 - 19 (Output)integer2357splith 2 = 2 i -Again, HR employs a two step proess where the orret rows are extratedand then redundant olumns are disarded.6.6.2 Generation of De�nitionsTo generate the de�nition of onepts produed by the split prodution rulewith this general parameterisation:h [1; 2; : : : ; i℄ = [v1; v2; : : : ; vi℄ iHR takes the de�nition of the old onept and replaes the letter in position1 with the value v1, the letter in position 2 with the value v2 and so on.For example, it onstruts the de�nition for prime numbers in the followingmanner: 18: [I; n℄ : n = jfd1 : d1jIgjsplit ?h 2 = 2 i19: [I ℄ : 2 = jfd1 : d1jIgjWe see that the seond letter, n has been replaed by the number 2. HRperforms a similar onstrution with the Prolog de�nition by instantiatingvariables to the values presribed by the parameters. For example, the Prologde�nition for prime numbers (onept 19) is produed as this:prediate(19,[I℄) :-prediate(18,[I,2℄).



86 6. Inventing Conepts6.7 The Compose Prodution RuleThe ompose prodution rule was originally designed to invent onepts byomposing two funtions, for example given funtions f(x) and g(x) it wasdesigned to onstrut the funtion h(x) = f(g(x)). Suh ompositions areubiquitous in mathematis. We have generalised this rule and at present italso inorporates the work of two old prodution rules whih have been men-tioned in previous publiations about HR, namely the onjunt and ommonrules. We omment on these old prodution rules in x6.7.3. This rule is binary{ it takes a primary and a seondary onept as input.6.7.1 Data Table Constrution and ParameterisationsA new data table is produed by overlapping the rows of the primary data ta-ble with the rows of the seondary data table. To do this we need to know (a)whih pairs of tuples to overlap and (b) how to overlap them. The parameter-isation provides both these details. The general format of a parameterisationis: h 1; 2; : : : ; n i where n is the arity of the new onept whih will begreater than or equal to the arity of the primary onept. Eah i is either azero or the number of a olumn from the seondary data table. If we have atuple X = [x1; : : : ; xa℄ from the �rst data table, and a tuple Y = [y1; : : : ; yb℄from the seond data table, we say they math only if, 8 i suh that (1 � i � aand i > 0), xi = yi .For all pairs of tuples that math, a new tuple, T = [t1; : : : ; tn℄ is produedwhere: ti = �xi if 1 � i � ayi otherwiseThese new tuples make up the data table for the new onept.For example, suppose we start with a primary onept P and a seondaryonept S, both with arity 3, and the parameterisation h 1; 0; 2; 3 i. To builda new data table, we require a tuple [p1; p2; p3℄ from the data table of P anda tuple [s1; s2; s3℄ from the data table of S whih are suh that p1 = s1 andp3 = s2. Note that the zero in the parameters indiates that p2 does nothave to math any si. For eah pair of mathing tuples, a new one is formed:[p1; p2; p3; s3℄, and these tuples make up the new data table. We see that twoolumns have overlapped in this example.There are many possible parameterisations for a partiular pair of on-epts. A parameterisation with n entries will produe a new onept of arityn. All new onepts must have at least the arity of the primary onept, inwhih ase the tuples of the seondary onept overlap ompletely. The arityof the new onept will be at most the sum of the primary and seondaryarities minus 1, in whih ase the overlap will amount to only 1 entry in thetuples being the same. To generate all possible parameterisations, HR runsthrough the range of arities for the new onept, and for eah arity, it �nds



6.7 The Compose Prodution Rule 87all the possible ways in whih the tuples an overlap. Overlapping of di�erenttypes of objets suh as nodes and edges is not allowed.This prodution rule may produe onepts with greater arity than theinput onepts. In ertain ases this is desirable, but we often put a limit onthe arity of onepts that an be produed, usually to only 4. This is beausewe have found that onepts of arity 5 and above are usually fairly ompli-ated, and rarely interesting. Hene we often restrit the parameterisation tohaving four or less entries. There is no reason why the primary and the se-ondary onept annot be the same, as long as the overlap is not trivial (i.e.the identity overlap where eah olumn of the table is mathed with itself).The example hosen for this prodution rule shows how the ompositionof funtions an be ahieved. We will ompose the � funtion:18. [I;N ℄ : N = jfd1 : d1jIgjwith itself to produe the number of divisors of the number of divisors of aninteger. To do this, we use the parameters h 0; 1; 2 i in the following way:18 (Tau funtion)integer number1 12 23 24 35 26 47 28 49 310 4
18 (Tau funtion)integer number1 12 23 24 35 26 47 28 49 310 4

ompose-h 012 i
20 (Output)integer number number1 1 12 2 23 2 24 3 25 2 26 4 37 2 28 4 39 3 210 4 3



88 6. Inventing ConeptsWe see that the right hand olumn ontains the result of applying the � fun-tion twie, so we have reated the funtion �(�(n)), whih was our originalaim when implementing this prodution rule.6.7.2 Generation of De�nitionsWith knowledge of whih onepts are funtions, HR ould use nested fun-tions in de�nitions for some onepts produed by the ompose rule. Forexample, if the � funtion was omposed with itself, HR ould write �(�(n)).In ertain ases, it would be possible to tell that a onept is atually a fun-tion. For instane, onepts output by the size prodution rule produe asingle number { the set size { for a given input. In other ases, while it mayappear that there is only one output for an input, this may be only true forthe entities HR is working with, and it would require a proof that the oneptwas a funtion.We have not implemented an ability to prove whih onepts are fun-tions beause this knowledge is not used elsewhere in the theory formation.However, we do not rule this out in later versions of HR. Instead of usingnested notation for onepts produed by the ompose rule, HR generatesde�nitions of the form: P (a1; a2; : : :) & S(b1; b2; : : :)where P is the prediate of the primary onept and S is the prediate for theseondary onept. Whih letters to put into the two prediates is determinedby the parameterisation. Firstly, HR generates orret letters for the olumnsof the new data table, then plaes these letters into the prediates for theprimary and seondary onepts making sure that those letters whih shouldmath do so.For example, the de�nition generated for onept 20 is:20. [I;N;M ℄ : N = jfd1 : d1jIgj &M = jfd2 : d2jNgjIf we use the � sign to abbreviate this, we get:20. [I;N;M ℄ : N = �(I) &M = �(N)whih learly shows that a omposition of funtions has ourred.The Prolog de�nitions are similarly generated, but in Prolog a omma isused instead of the Otter & sign to onjoin literals. For example, the Prologde�nition of onept 20 onsists of two opies of the prediate for onept 18:prediate(20,[I,N,M℄) :-prediate(18,[I,N℄),prediate(18,[N,M℄).Again, this learly shows the omposition of the funtions, as the output fromprediate 18, namely N, is put bak in as the input to prediate 18.



6.8 The Forall Prodution Rule 896.7.3 Generalisation of Previous Prodution RulesTwo other prodution rules alled \onjunt" and \ommon" have not beendisussed here beause the onepts they produe are overed by the om-pose rule. Conjunt ombined the prediates of two old onepts in muh thesame way as the ompose rule, but was restrited to only produing oneptswith the same arity as the primary onept. As disussed above, the om-pose rule was originally implemented only to failitate the introdution ofonepts whih ompose two funtions, as in the examples above. However,we notied that when the onepts being omposed were not funtions, thisation was simply the onjuntion of two prediates. Therefore the omposerule generalised the onjuntion of prediates. We realised that the onjuntprodution rule was a speial ase of the ompose rule with the restritionthat only onepts with the same arity as the primary input onept wereprodued.The ommon prodution rule was designed to �nd pairs of tuples of subob-jets with the property of the single input onept. For example, it introduesthe onept of pairs of divisors, or the onept of pairs of nodes whih sharean edge in a graph (adjaeny). We found that this funtionality was pro-dued when the ompose rule was used with the same onept as primary andseondary input and allowed to produe a onept with greater arity thanthe onept it started with.Conjunt and ommon are still available to HR and an be used in plaeor even alongside ompose. If used in plae of ompose, ertain onepts areovered by onjunt and ommon, but some are missed. If used alongsideompose, then there is some dupliation of work.6.8 The Forall Prodution RuleThis prodution rule implements the idea we touhed upon in Chapters 3and 4, of taking speial interest in those entities for whih a ertain prop-erty holds in all ases. Motivating examples inlude Abelian groups (whereall elements ommute), omplete graphs (where all nodes are adjaent) andrepdigit integers (where all digits are the same).6.8.1 Data Table Constrution and ParameterisationsThis is a binary prodution rule whih takes a primary and seondary oneptas input. The seondary onept must be a subobjet onept, for instaneone supplied by the user (suh as divisors of an integer), or one produed byHR (suh as odd divisors of an integer). The primary onept must speify arelation whih involves the subobjets from the primary onept.The parameterisation is a subset of olumn numbers from the primaryonept: h 1; 2; : : : ; i i. HR �rst onstruts the objet data table for these



90 6. Inventing Coneptsolumns. To reap, tuples for the objet data table are onstruted by takingtuples T = [t1; t2; : : : ; tn℄ from the original data table and extrating tuplesS = [t1 ; t2 ; : : : ; ti ℄. This will leave a residue tuple of elements from T whihwere not extrated: R = [tr1 ; tr2 ; : : : ; trk ℄ where:fr1; r2 : : : ; rkg = f1; 2; : : : ; ng=f1; 2; : : : ; igAs the same objet tuple might appear in more than one row, there will bea set of residue tuples for eah objet tuple. For every distint objet tuple,the set of residue tuples is olleted.We use a ontrived example here, beause, to demonstrate the onstru-tion, we want a primary onept of arity greater than 2 and an think of nosimple example of the use of the forall prodution rule from number theorywhih would suÆe. The example we give in x6.8.2 is from number theory,but the primary onept is of arity 2. Suppose we start with this data table:Exampleinteger divisor divisor1 1 12 1 12 2 12 2 23 1 13 3 13 3 34 1 14 4 14 4 24 4 4and the parameterisation h 1 i, then the objet data table is onstruted, andfor eah objet tuple the following set of subobjet tuples is onstruted:Primary Subobjet Tuples (Table I)integer set1 f(1,1)g2 f(1,1),(2,1),(2,2)g3 f(1,1),(3,1),(3,3)g4 f(1,1),(4,1),(4,2),(4,4)gHR next looks at the seondary data table whih ontains pairs (E; S) ofentity and subobjet. If the primary subobjet tuples ontained n elements,then for every objet tuple, HR onstruts every tuple (S1; S2; : : : ; Sn) fromthe seondary table. For example, the data table of divisors for the numbers1 to 4 is:



6.8 The Forall Prodution Rule 91Divisorsinteger divisor1 12 12 23 13 34 14 24 4Therefore, the set of pairs of divisors for eah integer is:Seondary Subobjet Tuples (Table II)integer set1 f(1,1)g2 f(1,1),(2,1),(2,2)g3 f(1,1),(3,1),(3,3)g4 f(1,1),(2,1),(2,2),(4,1),(4,2),(4,4)gTo �nish the onstrution, for eah objet tuple, if the set of subobjettuples from the seondary data table is a subset of those from the primarydata table, the objet tuple is kept and added to the new data table. In thease of the above example, we an ompare the two sets of subobjet tuplesfrom tables I and II above: Subobjet Tuplesinteger Primary Subobjet Tuples Seondary Subobjet Tuples1 f(1,1)g f(1,1)g2 f(1,1),(2,1),(2,2)g f(1,1),(2,1),(2,2)g3 f(1,1),(3,1),(3,3)g f(1,1),(3,1),(3,3)g4 f(1,1),(4,1),(4,2),(4,4)g f(1,1),(2,1),(2,2),(4,1),(4,2),(4,4)gWe see that only integers 1; 2 and 3 have the full set of seondary subobjettuples in the primary data table. Hene only these are extrated to form thenew data table: Outputinteger123



92 6. Inventing Conepts6.8.2 Generation of De�nitionsCare must be taken to produe de�nitions whih math the data tables.Firstly, we note that objet tuples for whih there are no subobjets satis-fying the primary relation are not inluded in the output table. It ould besaid, for example, that all the prime divisors of 1 are even, as 1 has no primedivisors. However, if the onstrution of integers where all the prime divisorsare even is made using HR's forall prodution rule, 1 will not be output asit did not appear in the primary table to start with. Therefore, in the def-initions generated by this rule we �rst make it lear that the objet tuplesin the output table had at least one subobjet tuple whih satis�ed the re-lation. This is ahieved by starting the de�nition with the relevant existenestatement. Following this, we use Otter's impliation sign, ->, to say that if asubobjet tuple satis�es the seondary de�nition, this implies that it satis�esthe primary de�nition.The de�nitions produed by this prodution rule are often fairly ompli-ated. For example, the onept of integers for whih every divisor greaterthan 1 is even is given this de�nition:21. [I ℄ : exists d1 (d1jI & 1 < d1) &(all d1 (d1jI & 1 < d1! d1jI & 2jd1))This e�etively states that (i) there is a divisor of I whih is greater than1 and (ii) if d1 is a divisor of I whih is greater than 1, then this impliesthat d1 is an even divisor. This is another way of saying that all divisors ofI whih are greater than one are even divisors of I .The Prolog de�nitions for onepts produed with the forall rule reetthe way in whih the data tables are produed. The Prolog de�nitions workin four stages:(1) They onstrut the set of subobjet tuples from the seondary onept.(2) They fail for objet tuples with an empty set of subobjet tuples.(3) They onstrut the set of subobjet tuples from the primary onept.(4) They fail if the seondary set is not ontained in the primary set.For example, Figure 6.1 ontains the Prolog de�nition generated for onept21 above. There are three things to note. Firstly, the de�nition uses thetop-level subobjet onept of divisors (prediate 2) to generate the divisors.This is neessary as neither prediate 22 (integers greater than 1) nor 23 (evenintegers) an perform this generation. Seondly, a neater solution would beto simply look for a divisor whih satis�ed prediate 22 but not prediate 23,then fail if one is found. However, a prediate of this nature would not fail ifthere are no divisors whih satisfy prediate 22, and the de�nition would notmath with the data table. Thirdly, Sistus Prolog does not provide a subset



6.9 EÆieny and Soundness Considerations 93prediate, so the last line heks that there is no member of List2 whih isnot a member of List1.prediate(21,[I℄) :-findall(D1,(prediate(2,[I,D1℄),prediate(22,[I,D1℄)),List1),\+ List1==[℄,findall(D1,(prediate(2,[I,D1℄),prediate(22,[I,D1℄),prediate(23,[I,D1℄)),List2),\+ (member(X,List2), \+ member(X,List1)).Figure 6.1 Prolog de�nition for onept 21
6.9 EÆieny and Soundness Considerations6.9.1 Forbidden PathsThere are many onepts in mathematis whih are de�ned in more thanone way. For example, primes an be de�ned as having exatly 2 divisors,or greater than 1 and only divisible by 1 and themselves. In HR, the sameonept an be reahed by di�erent paths resulting in multiple de�nitions forthe same onept. As disussed in Chapter 7, HR has the ability to onjeturethat two onepts are equivalent if they have exatly the same data table.Suh onjetures arise for one of three reasons. Firstly, they may be false andonly arise beause of the lak of data in the theory. We disuss how theseare dealt with in Chapter 8. Seondly, they ould arise beause of the natureof the domain, i.e. true beause of the axioms of the theory HR is workingin. These onjetures are interesting, as they will often require a non-trivialproof.Thirdly, equivalene onjetures arise beause of the nature of the on-strution tehnique, i.e. two onstrution paths always lead to the same on-ept, regardless of the axioms of the theory or the onepts the onstrutionsstarted with. These onjetures are instanes of tautologies and are generallyof little interest as their proof will usually be trivial. For example, if HR per-forms two negate steps in a row, it will end up with the onept it startedwith. It will then make a onjeture of the form:P (a; b; : : :) () �(�(P (a; b; : : :)))



94 6. Inventing Coneptswhih is an instane of a tautology { it is true regardless of the axioms presentor the nature of P; a; b; et.At present, our approah to stopping tautology onjetures from arising isad ho. HR is supplied with a set of forbidden paths, whih are onstrutionpath segments it is not allowed to take. For example, it is not allowed to followa negate step with another negate step, and so does not make tautologyonjetures of the above form. There are three lasses of forbidden paths.Firstly, some forbidden paths are written into the algorithms for gen-erating the parameterisations. For example, the parameterisations for theompose prodution rule will not introdue onepts of the form:P (a; b; : : :) & P (a; b; : : :)Therefore, trivial tautologies of the form:P (a; b; : : :) () P (a; b; : : :) & P (a; b; : : :)will not arise by this route. Similarly, no prodution rule is allowed to generatea parameterisation whih will obviously ause the input onept to be output.For example, as disussed above, the math prodution rule must performsome mathing, and the exists prodution rule must remove at least oneolumn from the input data table.The seond lass of forbidden paths are those whih stop a partiularprodution rule being used on a onept whih has been onstruted in aertain manner. This inludes forbidding double negations, and will also stopthe formation of these tautology onjetures:�(9 a; b; : : : (P (a; b; : : :))) () 8 a; b; : : :� (P (a; b; : : :))�(8 a; b; : : : (P (a; b; : : :))) () 9 a; b; : : :� (P (a; b; : : :))jf(a; b; : : :) : P (a; b; : : :)gj = 0 () �(9 a; b; : : : (P (a; b; : : :)))jf(a; b; : : :) : P (a; b; : : :)gj = 0 () 8 a; b; : : :� (P (a; b; : : :))Note that we all onepts whih are produed by a ompose step onjun-tions and those produed by any other prodution rule fats. The use of themath prodution rule is restrited so that it annot be used with a onjun-tion onept. This is beause performing a math step with, say, a onept ofthe form P (a; b) & Q(a; b) will produe a onept suh as P (a; a) & Q(a; a).This an be ahieved also by performing the math step separately on P (a; b)and Q(a; b) then omposing the two output onepts. Hene, by forbiddingthe mathing of onjuntions, we improve eÆieny again.We also need to stop onstrutions whih result in onjetures of thefollowing type:P (a; b; : : :) & Q(a; b; : : :) () Q(a; b; : : :) & P (a; b; : : :)



6.9 EÆieny and Soundness Considerations 95To do this in the general ase, for every onept C, HR reords a list of pairsof the form (X;P ), where X is the number of a fat onept, and P is a listof olumn numbers. The list represents the set of onjoined fats whih makeup C. For example, given these two onepts:13: [n; a℄ : a � a = n18: [n; a℄ : a = jfb : bjngjif the following onept was onstruted by omposing onepts 13 and 18:24: [n; a; b℄ : a � a = n & b = jf : jagjthen HR would reord a list of two pairs: (13; [1; 2℄) and (18; [2; 3℄) for onept24. This list tells HR that fat onepts 13 and 18 are onjoined to giveonept 24. It also states that variables 1 and 2 from onept 24 are inputto the prediate for onept 13 and variables 2 and 3 input to the prediatefor onept 18 to give the de�nition for onept 24. We all this the fat listof the onept. HR's most restritive forbidden path { in the sense that itforbids more paths than any other { restrits the use of the ompose rule,using information from the fat list in the following manner.Firstly, using the fat list of the two onepts to be omposed, for eahpossible parameterisation, HR determines what the fat list of the resultingonept will be. It then disards any parameterisation whih will result in arepeated element in the fat list of the new onept. If a onept has a fatlist with repeated members, its de�nition will have the onjuntion of twoidential prediates, whih will result in a tautology onjeture being made.Seondly, HR only allows the omposition of two fat onepts, or of aonjuntion onept and a fat onept. By not allowing the omposition oftwo onjuntions, a onjuntion onept must be built up by adding one fatat a time. To further restrit the omposition of two onepts, two fats anonly be omposed if the �rst one has a smaller onept number than theseond. Hene there is only one way to produe, say, a onept of the form:[a; b; ℄ : P (a; b; ) & Q(a; b) & R(a)whih is by forming onepts in this order:[a; b; ℄ : P (a; b; )[a; b; ℄ : P (a; b; ) & Q(a; b)[a; b; ℄ : P (a; b; ) & Q(a; b) & R(a)This muh redues the number of tautology onjetures whih are formedstating that one onjuntion of prediates is equivalent to a onjuntion ofthe same prediates in a di�erent order.The third lass of forbidden paths are those whih are not introduedto ut down the number of tautologies formed, but whih are used to ut



96 6. Inventing Coneptsdown on the number of uninteresting onepts produed. In partiular, thesplit prodution rule is often restrited to only looking for the values 1 or 2.When we impose this restrition, HR is able to �nd onepts suh as primenumbers, with exatly 2 divisors, but not the onept of integers with exatly3 divisors. Allowing more split values inreases the yield of onepts, but theadditional onepts are often less interesting.The forbidden paths are fairly blunt devies for ontrolling the theory for-mation. While they do improve eÆieny greatly, they an sometimes oun-terat the heuristi searh disussed in x9.1. That is, the heuristi searh isdireted by an assessment of the onepts, with the most interesting ones be-ing used in further onstrutions before the less interesting ones, but the wayin whih a onept has been onstruted may mean that ertain forbiddenpaths stop it from being fully developed.For example, suppose the heuristis HR uses (as disussed in Chapter 9)�nd that onepts A and B below are the most interesting:A: [a; b℄ : P (a; b) & Q(a; b)B: [a; b℄ : R(a; b) & S(a; b)it may therefore suggest the omposition of these two onept whih, amongother things, would produe this onept:C: [a; b℄ : P (a; b) & Q(a; b) & R(a; b) & S(a; b)However this suggestion would be bloked by the forbidden paths meha-nism, as omposition is only allowed when the seond onept is not a diretonjuntion of previous onepts. In this ase, onept C would have to bebuilt up by �rst onstruting the onept:[a; b℄ : P (a; b) & Q(a; b) & R(a; b)This onstrution might not be suggested by the heuristi and the desiredomposition may not our in the time allowed for the session.In summary, while there are only seven prodution rules and HR onlystarts with a handful of onepts, it still runs into a ombinatorial explo-sion. Conept formation will result in a dupliation of e�ort if two opies ofthe same onept are allowed to exist side by side in a theory, as both willbe developed. Forbidden paths provide one way to redue the searh spae,utting down the number of trivially equivalent onepts whih are formed.While they are very e�etive in this role, we have seen that they may oun-terat the heuristi searh by forbidding onstrution paths that the heuristimight suggest. Further work is required to devise more general ways to utdown the number of tautology and uninteresting onjetures that HR makes.In partiular the lassi�ation of onepts into fats and onjuntions needsmore re�nement and knowledge of the prediate struture of onepts ouldbe used to improve matters.



6.9 EÆieny and Soundness Considerations 976.9.2 Generated and Stored PropertiesThe AM system ame to a halt after around 180 new onepts had been intro-dued. One reason for this was that it ran out of memory spae, whih is stilla problem for many Arti�ial Intelligene programs. AM had many faets fora onept, and would only �ll in the most important to start with, returningto omplete the piture only if the onept was deemed to be interesting forsome reason.In HR there is also a payo� between speed and memory spae and theuser an set various ags to �nd a balane, as disussed in Appendix A. Atone extreme, it is possible to represent a onept by just its onstrutionhistory, and every time it omes to using that onept, all other informationis generated. However, this is very time onsuming. In partiular, if the datatable of eah onept has to be generated every time it is used, then thetheory formation is very slow. Usually, we make HR store just the data table,onstrution history and types (in the olumns) for eah onept, as these areall that are neessary to onstrut a theory. To be able to use the forbiddenpath mehanisms, HR also stores the deomposition into fats as disussedabove. Often, we set ags in HR to tell it not to store onept de�nitionsas a theory progresses, whih uts down on the memory whih the theoryoupies. However, if we are forming a theory where many onjetures arestated and passed to the theorem prover, it is more eÆient to tell HR tostore de�nitions rather than generating them every time they are needed.6.9.3 Proving Consisteny Between Data Tables and De�nitionsThe three main roles of a prodution rule are to (i) generate a set of param-eterisations for a given input onept or pair of input onepts, (ii) generatea new data table for the output onept and (iii) generate a new de�nitionfor the output onept. Theoretially, the last two ations ould introdueundesired inonsisteny into the theory, by produing a de�nition whih doesnot orretly desribe the objets in the data table for a onept. As the on-epts are represented by their data tables, with de�nitions generated whenneeded, suh an inonsisteny will not ompletely ruin the theory formation.However, it will result in the inorret statement of onjetures beause thefaulty de�nitions for the onepts appear in the onjeture statements. In theworst senario, two onepts whih are in fat di�erent may be proved to beequivalent, whih will result in HR disarding one of them.Therefore, it is very important to maintain onsisteny between the datatables and de�nitions. We have thoroughly analysed the ation of eah pro-dution rule on the data tables it manipulates and arefully written andre-written the format for the de�nitions they produe. In partiular, we re-vised the de�nitions from the size prodution rule to reet the fat that theonepts it produed were in fat partial funtions { they would not returnzero if the input objet had no subobjets. We have also used Otter to detet



98 6. Inventing Coneptsinonsistenies. In general, even with forbidden paths, a large proportion ofthe onjetures HR makes are true, and Otter has little trouble in provingthem. However, when there is an inonsisteny, the statements of the onje-tures will be inorret, whih in most ases will lead to the formation of afalse onjeture and Otter will fail, highlighting the problem.Close observation of the faulty onjetures have led to an insight into theinonsisteny. In this manner, we traked down a fault with the formation ofde�nitions from the forall prodution rule, and improved the de�nitions usingthe Otter impliation symbol rather than the forall notation. Inonsisteniesare rare, and only arise when a new prodution rule is introdued. HR usesonly seven prodution rules, most of whih perform a fairly simple ation onthe onepts, and due to the extensive testing we have undertaken, we areon�dent that suh inonsistenies do not arise.6.10 Example ConstrutionsTo illustrate the power of the prodution rules, we show that it is possible toreah interesting onepts from fundamental onepts using only these sevengeneral prodution rules. In Figures 6.2 to 6.4, we present onstrution pathsfor four well known onepts, showing the entire history from the fundamen-tal onepts to the target onept. The onepts are (i) prime numbers, whihhave exatly two divisors, (ii) Abelian groups, where every pair of elementsommute, (iii) omplete graphs, where every pair of nodes are adjaent, and(iv) the � funtion, whih ounts the number of integers less than n whihare o-prime to it. HR generates these diagrams using the Dot program,[Koutso�os & North 98℄, and they an be useful in helping the user to un-derstand the de�nition of the onept. Note that we make no omment hereabout the searhes whih lead to onstrutions suh as these { this aspet ofHR's funtionality is disussed in Chapter 9.
2. [I1,d1] : d1|I1

4. [I1,M] : M = |{d1 : d1|I1}|

size<1>

5. [I1] : 2 = |{d1 : d1|I1}|

split<2=2>

2. [G,a,b,c] : a*b=c

6. [G,a,b,c] : a*b=c & b*a=c

compose<1324>

7. [G,a,b] : (exists c (a*b=c & b*a=c))

exists<123>

5. [G,a] : a in G

8. [G] : (all a b ((exists c (a*b=c & b*a=c))))

forall<23>forall<23>Figure 6.2 Constrution history for prime numbers and Abelian groups



6.10 Example Construtions 99
2. [G,n1] : node(n1)

7. [G] : (all n1 n2 ((exists e1 (n1 is on e1 & n2 is on e1))))

forall<23>

4. [G,e1,n1] : n1 is on e1

5. [G,e1,n1,n2] : n1 is on e1 & n2 is on e1

compose<1203>

6. [G,n1,n2] : (exists e1 (n1 is on e1 & n2 is on e1))

exists<134>

forall<23>Figure 6.3 Constrution history for omplete graphs
2. [I,d1] : d1|I

6. [I,a,d1] : a < I & d1|I

compose<102>

7. [I,a,d1] : a < I & d1|I & d1|a

compose<012>

compose<012>

8. [I,a,N] : N = |{d1 : a < I & d1|I & d1|a}|

size<12>

3. [I,a] : a < I

compose<102>

9. [I,a] : 1 = |{d1 : a < I & d1|I & d1|a}|

split<3=1>

10. [I,N] : N = |{a : 1 = |{d1 : a < I & d1|I & d1|a}|}|

size<1>Figure 6.4 Constrution history for the � funtion



100 6. Inventing Conepts6.11 SummaryThe invention of new onepts is vital to any theory formation program,whih is why it is the one aspet shared by all the theory formation programsdisussed in Chapter 2. Without onept formation, it is only possible to makeand prove onjetures about the onepts given by the user. With oneptformation, it is possible to �nd interesting onjetures about losely or notso losely related onepts.Rather than following AM's example of having many ad ho tehniquesappliable in restrited situations, we hose to implement only seven verygeneral prodution rules. Eah prodution rule an, however, be used to pro-due many onepts for a given input onept. Hene eah prodution ruledetermines the ways in whih it an be applied to a partiular onept bygenerating a set of parameterisations. The seond job of a prodution ruleis to generate a new data table for the output onept. Finally, when it isalled upon to do so, a prodution rule must be able to take either the Otteror Prolog de�nition of an old onept and produe a new de�nition in thesame style.The prodution rules are one of the major ontributions of this projet,and we have expended more time on perfeting HR's ability to invent on-epts than on any other area of theory formation. However, this area is alsoone whih needs muh improvement. In partiular, HR's knowledge of theprediate struture of a onept C is limited to knowing only whether C isa onjuntion of fats (i.e. it is produed by the ompose prodution rule).By improving HR's understanding of this struture, we hope to provide amore intelligent approah to eÆieny onsiderations than the forbidden pathmehanisms presently in plae. Another area for improvement is the intro-dution of new prodution rules { as disussed in x14.1.1.We have doumented the way in whih eah rule produes parameteri-sations, data tables and de�nitions. Furthermore, we have disussed the ef-�ieny and soundness onsiderations for onept formation of this nature.Finally, we have demonstrated how these simple tehniques an lead HR fromthe most fundamental onepts of a domain to some of the most important.



7. Making Conjetures
1, 10, 102, 1023, 10234, 102345, 1023456, 10234567, 102345678, : : :A038378. Integers whih have more distint digits than any smaller number.Conjetures are statements about various onepts in a theory whih arehypothesised to be true. If the statement is proved to be true, it is a the-orem; if it is shown to be false, it beomes a non-theorem; if the truth ofthe statement is undeided, it remains an open onjeture. Making and prov-ing onjetures automatially in mathematis has been a long term goal ofArti�ial Intelligene, dating bak to Simon and Newell's 1958 predition,[Simon & Newell 58℄, that within ten years a omputer would disover andprove an important mathematial theorem. There has been onsiderablework in automated theorem proving, but muh less researh into the problemof disovering onjetures automatially. As in many sienes, mathematialonjetures often arise from empirial observations of data. In mathematis,patterns found in the examples of onepts an result in a onjeture thatthe pattern is not just true of the small sample in the data, but is true of allthe examples possible for the onepts. We disuss four ways to identify suhpatterns in the examples of mathematial onepts.In x7.1, we look at how HR makes equivalene onjetures whih statethat the de�nitions of two onepts are logially equivalent. In x7.2, we lookat how HR makes impliation onjetures stating that one onept is a spe-ialisation of another. In x7.3, we look at non-existene onjetures, whihstate that there are no examples satisfying the de�nition of a partiular on-ept. In x7.4, we desribe how HR makes appliability onjetures, whihstate that the examples satisfying a de�nition are restrited to a partiular�nite set. For eah type of onjeture, we disuss their nature and give mo-tivating examples from the mathematial literature. We then disuss how tomake suh onjetures automatially in general and desribe the implemen-tation in HR. In x7.5 we disuss how HR uses the Enylopedia of IntegerSequenes [Sloane 00℄ to make onjetures in number theory. Finally, in x7.6we summarise some important issues in automated onjeture making anddisuss some possible alternatives to the tehniques implemented in HR.



102 7. Making Conjetures7.1 Equivalene ConjeturesGiven two onepts in a theory, an equivalene onjeture states that thede�nition of the �rst onept is equivalent to the de�nition of the seond, ine�et stating that all the examples satisfying the �rst de�nition will satisfythe seond de�nition and vie versa. Equivalene theorems are ubiquitous inthe mathematial literature, and are found in a variety of formats, inludingthe following:(a) 8 a; b; : : : P1(a; b; : : :) () P2(a; b; : : :):(b) 8 a; b; : : : f1(a; b; : : :) = f2(a; b; : : :):() 8 a; b; : : : P1(a; b; : : :) if and only if P2(a; b; : : :):(d) 8 a; b; : : : P1(a; b; : : :) is neessary and suÆient for P2(a; b; : : :):(e) 8 a; b; : : : the following de�nitions are equivalent:(i) P1(a; b; : : :), (ii) P2(a; b; : : :), et.(For prediates P1 and P2 and funtions f1 and f2). Note that the di�erenebetween these onjetures is purely in terms of their presentation in themathematial literature, exept (b), where funtions, rather than prediates,are being disussed.Three well known equivalene theorems from mathematis are:� H is a subgroup of G if and only if the identity element of G is in H and8 a; b 2 H; ab�1 2 H [Humphreys 96℄.� An n-gon is onstrutible with ruler and ompass if and only if n is aprodut of powers of two and distint primes of the form 22k+1 [Stewart 89℄.� An integer is an even perfet number if and only if it is of the form2n(2n+1 � 1), where 2n+1 � 1 is prime [Hardy & Wright 38℄.The onepts disussed in these onjetures are prediates and the state-ments are given as if-and-only-if sentenes to show the equivalene of thede�nitions. Sometimes, as in these examples, the �rst onept is intrinsiallyof interest, and the seond onept provides a more eÆient test for mem-bership (or a generation tehnique). For example, to hek whether a subsetof elements from a group form a subgroup, instead of heking the groupaxioms, it is quiker to simply hek that the subset ontains the identityelement and the subset is losed under the operation ab�1. This quik hekfor subgroups is made possible by the theorem.When the onepts being disussed are funtions rather than prediates,the equivalene of the de�nitions is more often stated as an equality onje-ture, rather than an if-and-only-if onjeture. For example Euler's theoremstates an equivalene of funtions:



7.1 Equivalene Conjetures 103� 8 a; n 2 N suh that a and n are o-prime, a�(n) � 1(mod n)[Hardy & Wright 38℄.Note that �(n) ounts the number of positive integers less than n whih shareno prime fators with it (i.e. o-prime integers) and we say that a mod n = kif a leaves remainder k when divided by n. Again the onjeture enables aquiker alulation of the funtion of interest: if we wanted the remainderof a�(n) when divided by n, we wouldn't need to do any alulations, as thetheorem tells us that the answer is 1 (if a and n are o-prime). Another use ofequivalene theorems is to prove further theorems. This is ahieved by takingde�nitions in the theorem to be proved and re-writing them with equivalentde�nitions (as proved in the equivalene theorem). When the onjeture tobe proved is an equivalene onjeture itself, re-writing tehniques an oftenbe used to prove the theorem, by transforming the left hand side into theright hand side.7.1.1 Making Equivalene Conjetures AutomatiallyMaking an equivalene onjeture amounts to �nding two onepts and stat-ing that their de�nitions are equivalent. When there are examples for oneptsavailable, the searh an be restrited to looking for pairs of onepts withthe same examples, as this is neessary for them to be equivalent.For example, in the early stages of a group theory session, HR usuallyinvents the onept of elements, a for whih a � a = a. It then �nds that thedata table for this new onept is exatly the same as the data table for theidentity element onept, and makes the onjeture:8 G;8 a 2 G (a � a = a () a = identity): (7.1)This onjeture is true, but an empirial approah to making onjetures anoften produe false onjetures due to a lak of data. For example, whenworking with the groups up to order 5, HR makes the onjeture that theonept of a group and the onept of Abelian groups are the same, i.e. thatall groups are Abelian. This non-theorem appears to be true beause the �rstnon-Abelian group is of order 6.7.1.2 Implementation DetailsWhenever a new onept is introdued, HR heks whether it has the samedata table as an old one. If it does, then a onjeture is stated that the oldand new onepts have equivalent de�nitions. As disussed in x4.2.2, keepingtwo onepts with the same examples will result in a dupliation of e�ort,as the onepts derived from one will be the same as those derived from theother. Even if the equivalene onjeture turns out to be false, the dupliationwill still our. Hene HR will only allow a onept into the theory if it has a



104 7. Making Conjeturesdi�erent data table to all previous ones. If the equivalene onjeture is laterdisproved, the onept will be allowed bak into the theory.Eah row in a data table is an example of the onept and equivalentonepts ould have data tables whih di�er in the order of the rows. Asmentioned in x6.1.1, to improve eÆieny, the rows in the data table for eahonept are sorted using the standard Prolog sort operator so that HR antell if two data tables are di�erent if any row di�ers from its ounterpart.This redues the omplexity of the heking algorithm to order nm, where nis the number of rows in the data table and m is the number of olumns. Tofurther improve eÆieny, we made HR �rst selet only those old oneptswith values for ertain measures equal to the values for the new onept. Inpartiular, for an old onept to be seleted for the data table test, it musthave:(i) The same number of rows and olumns in its data table as the new onept.(ii) The same types of objets in the olumns as the new onept.(iii) The same ategorisation as that given by the new onept.As we disuss more in x9.3, every onept ategorises the entities in thetheory, e.g. the onept of prime numbers ategorises the numbers 1 to 10into non-primes and primes: [1,4,6,8,9,10℄ and [2,3,5,7℄. HR also makes use ofthe ategorisations to index the onepts. By heking the above riteria inthe order given, the number of onepts whih need to be tested is greatlyredued. We aknowledge that using hash-tables to look up equivalent tableswould have been a more elegant and probably more eÆient way of proeed-ing, but we did not implement this as the method desribed above workedwell and was eÆient enough for our needs.7.2 Impliation ConjeturesImpliation onjetures are statements relating two onepts by stating thatthe �rst is a speialisation of the seond, e�etively stating that all the ex-amples of the �rst will be examples of the seond. Impliation onjeturesare presented in various di�erent ways in mathematial texts, inluding:(a) 8a; b; : : : P1(a; b; : : :)) P2(a; b; : : :):(b) 8a; b; : : : P1(a; b; : : :) implies that P2(a; b; : : :):() All objets of type P1 are of type P2.(d) If P1(a; b; : : :) then P2(a; b; : : :).(e) If f1(a; b; : : :) = x then f2(a; b; : : :) = x.(For prediates P1 and P2 and funtions f1 and f2).



7.2 Impliation Conjetures 105There are many examples of impliation onjetures in mathematis, in-luding:� All yli groups are Abelian [Humphreys 96℄.� Every loopless planar graph is 4-olourable [Saaty & Kainen 86℄.� If n is the produt of onseutive integers, then it will not be a power (i.e.not of the form mk for any m 2 N and k � 2) [Erd}os & Selfridge 75℄.Note that the reverse statement for eah of these is not true, as shown withexamples: C2 � C2 is Abelian but not yli; K3 � K3 is 4-olourable, butnon-planar (see [Kuratowski 30℄); and 10 is not a power but also not theprodut of onseutive integers.Often, as in the GT program disussed in x2.2.2, suh onjetures arethought of as subsumption onjetures, where one set of objets subsumesanother set. Another interpretation is that impliation onjetures identify aproperty of a set of objets, for example, that yli groups have the propertyof being Abelian. By identifying the property, a greater understanding of theonept of interest is obtained. As with equivalene theorems, a possible usefor impliation theorems is in proving further theorems. Given a onjeturewith initial onditions and a goal, those onditions whih form the left handside of a previously proved impliation theorem an be re-written as the righthand side. Repeating this proess may lead to the goal state, thus provingthe theorem.7.2.1 Making Impliation Conjetures AutomatiallyMaking impliation onjetures using empirial evidene an be ahieved byidentifying that the examples of one onept are all examples of anotheronept, with no exeptions. In the HR program, this amounts to hekingthat every row of one data table is ontained within another data table. Forexample, in group theory, HR invents the following onept with appealingsymmetry: [G; a; b℄ : a � a = b & b � b = aand �nds that all the rows of its data table are also rows of the data tablefor the inverse element onept:[G; a; b℄ : b = a�1:It therefore makes the following impliation onjeture:8 G;8 a; b 2 G; a � a = b & b � b = a) b = a�1;whih is easy, but not trivial, to prove.As with equivalene onjetures, an empirial approah an often produenon-theorems due to a lak of data. For example, working with the numbers



106 7. Making Conjetures1 to 14, HR makes the onjeture that all odd non-square numbers are prime,beause this is empirially true: the �rst odd non-square number whih is notprime is 15.7.2.2 Implementation DetailsImpliation onjetures are not sought every time a new onept is introduedbeause they often arise as trivial onsequenes of the onept formationproess performing speialisations. To illustrate this, note that every timeHR performs a ompose step, ombining prediates P and Q, it would makeat least these two impliation onjetures:P & Q) P and P & Q) Q:We have not yet implemented ways to prune suh onjetures, but plan todo so. Also, impliation theorems arise as prime impliates in the theoremproving proess (see Chapter 8), and so the theories HR produes do inludeimpliation onjetures, but they result from theorem proving rather thanempirial onjeture making tehniques.Impliation onjetures an be made after a theory has been formed toenable the user to investigate onepts of interest. For example, if the userwas interested in a onept with de�nition P (n), he or she ould ask HRto provide a set of impliation onjetures of the form P (n) ) Q(n) andof the form R(n) ) P (n) to help them investigate the onept. As withequivalene onjetures, HR �rst narrows down the number of onepts tohek for impliation onjetures by restriting the hoie to only those whihhave the same types in the olumns of the data table as the onept of interest.Also, to redue the number of trivial onjetures suh as P & Q ) P , theuser may wish to prune the output using measures disussed in Chapter 10to inrease the yield of potentially interesting onjetures.7.3 Non-existene ConjeturesNon-existene onjetures are statements that a partiular de�nition is in-onsistent with the axioms of the theory, e�etively stating that it is notpossible to �nd examples whih satisfy the de�nition. They are also ommonin the literature, often arising when it appears that a onept with a sim-ple de�nition has no examples. The following are three ommon formats fornon-existene onjetures:



7.3 Non-existene Conjetures 107(a) There are no objets, a; b; : : : for whih P (a; b; : : :).(b) There are no solutions to: P (a; b; : : :).() There are no values a; b; : : : for whih f(a; b; : : :) = x.(For prediates P and funtions f).Two famous examples of non-existene onjetures are:� There are no odd perfet numbers [Hardy & Wright 38℄ (this onjeture isstill open).� The general polynomial equation of degree 5 is not solvable by radials[Stewart 89℄.7.3.1 Making Non-existene Conjetures AutomatiallyMaking non-existene onjetures using empirial evidene an be ahievedby �nding onepts for whih there are no examples in the data and statingthat no examples an possibly exist. In HR this amounts to notiing thatafter a partiular onept formation step has been undertaken, the resultingdata table is empty.As an example when working in number theory, HR routinely �nds boththe onept of square numbers:[n℄ : 9 a 2 N s.t. n = a � a;and prime numbers: [n℄ : jfd 2 N : d jngj = 2 :It then performs a ompose step, looking for square numbers whih are alsoprime, whih produes an empty table, as no suh numbers exists. HR thenmakes the onjeture that there are no numbers satisfying the de�nition ofprime numbers and of square numbers. The onjeture is stated by negatingthe de�nition of the onept using the Otter negation symbol (�) for negationthus: 8 n 2 N; �((9 a s.t n = a � a) & (jfa 2 N : ajngj = 2 )):The general format that HR uses is this:8 a; b; : : : ; �P (a; b; : : :)for prediates P . This format ould be simpli�ed but they are usually easyto understand and this format is aeptable to Otter.With a limited amount of data, it is possible to make false onjeturesstating that no examples exist for a onept. For instane, when workingwith the numbers 1 to 35, HR makes the onjeture that there are no squarenumbers with two prime divisors. This is false, but the �rst ounterexampleis the number 36.



108 7. Making Conjetures7.4 Appliability ConjeturesWhereas non-existene onjetures state that there are no examples for apartiular onept, there are also onjetures whih state that the examplesfor a onept are restrited to a partiular �nite set. We all suh statementsappliability onjetures, as they state to whih examples the onept is ap-pliable. These are presented in the mathematial literature in a variety ofways, inluding:(a) A and B are the only examples of an X .(b) A is the only Y for whih P (A).() The only solution to f(A) = B are A = a and B = b.(Where X and Y are types of objet and a and b are ground instanes ofobjets).Examples range from very simple statements suh as:� 2 is the only even prime number,to more ompliated statements, suh as Fermat's Last Theorem:� an+ bn = n only has solutions for integers a; b and  when n = 1 or n = 2[Singh 97℄.Note that we an interpret Fermat's Last Theorem as saying that the follow-ing onept only has examples 1 and 2:[n℄ : n 2 N & 9 a; b;  2 N s.t. an + bn = n7.4.1 Making Appliability Conjetures AutomatiallyMaking appliability onjetures automatially an be automated by enablingthe program to notie that the examples satisfying a de�nition are limitedto a small set and stating that there are no other examples whih satisfy thede�nition. To avoid making onjetures whih are unlikely to be true requiresa knowledge of the number of examples a program is working with. For ex-ample, if a program is given a hundred groups to work with, and a partiularonept de�nition is satis�ed by only three groups, it would be aeptable tomake the onjeture that there are no other groups to whih this onept ap-plies. However, if the program was only supplied with four groups, and threesatis�ed the de�nition, it would be unwise to make the appliability onje-ture. Hene a perentage of the number of examples available in the theoryhas to be hosen as the threshold below whih an appliability onjeture willbe made.



7.4 Appliability Conjetures 1097.4.2 Implementation DetailsAs with impliation onjetures, by default HR does not make appliabilityonjetures as a theory progresses. Disproving equivalene or non-existeneonjetures means that the onept is allowed into the theory, whih may befruitful. However, this is not the ase with appliability onjetures, beausethe onept is already allowed into the theory. Therefore, as with impliationonjetures, the quality and quantity of the onepts is not a�eted by makingappliability onjetures as the theory is built.Instead, this funtionality an be used to investigate a theory after ithas been formed. The user an ask for onepts whih have less than, say, nexamples. This results in appliability onjetures of the form:Conept C is satis�ed by only: E1; E2; : : : ; Ek.where the Ei are entities and k < n. Investigation into why these oneptsonly have a few examples might provide insight into the theory.Examples of appliability onjetures made by HR inlude the followingin number theory, where HR noties that the onept:[n℄ : 9 m 2 N s.t. m = jfd 2 N : d jN gj & m �m = nonly has examples 1 and 9. That is, the only integers for whih the numberof divisors is the square root of the number are 1 and 9, whih is true. Inonneted graph theory, HR identi�es that this graph theory onept:[G℄ : 1 = jfn : 1 = jfe : n is on egjgj(where n is a node and e is an edge), has only one example amongst the 10onneted graphs in its theory. The onjeture that there is only one examplefor this onept is not true, (there are, in fat, 35 onneted graphs with sixor fewer nodes whih exhibit this property). However, it does point out thesurprising fat that, of the 10 onneted graphs with four or fewer nodes, thefollowing is the only one with a unique endpoint:
(where endpoint is de�ned to be a node on exatly one edge).



110 7. Making Conjetures7.5 Conjeture Making Using the Enylopedia ofInteger SequenesOne of our initial motivations for theory formation was the possible applia-tion to mathematial disovery. This is a seondary aim of the HR projetand we have not investigated the full range of possibilities for theory forma-tion in mathematial disovery. However, we have implemented a way for HRto relate the onepts it makes to those found in the mathematial literature[Colton et al. 00℄. HR does this by making onjetures using the Enylope-dia of Integer Sequenes [Sloane 00℄ whih we disussed in x2.7. We employthe following seven step interative proess, whih we all the \invent andinvestigate" approah.[1℄ HR presents ertain onepts as integer sequenes.[2℄ HR identi�es sequenes missing from the Enylopedia, sorted by om-plexity (as de�ned later in x9.3.1).[3℄ The user hooses one of the novel sequenes, S.[4℄ HR �nds results involving S and sequenes from the Enylopedia.[5℄ HR prunes the output using values for measures set by the user.[6℄ The user interprets the results as onjetures and hooses one.[7℄ The user tries to prove the onjeture.Steps 1 and 2 are disussed in x7.5.1. Steps 4 and 6 are disussed in x7.5.2.Step 5 is disussed in x7.5.3. Note that HR's onjeture making faility usingthe Enylopedia an be used independently from the rest of the theoryformation funtionality. That is, S does not have to be a onept inventedby HR, it an be one hosen by the user, possibly from the Enylopedia.7.5.1 Presenting Conepts as Integer SequenesAs disussed in x2.7, the Enylopedia of Integer Sequenes ontains over50,000 sequenes, eah of whih is a mathematial onept whih must atsome stage have interested someone. Every time HR produes a theory, itmay ontain onepts whih have not been investigated in the mathematialliterature. In general, it is diÆult to know whether a onept is original, butin number theory the Enylopedia gives some indiation of novelty. That is,any of HR's onepts whih are in the Enylopedia are learly not novel,but any whih are missing may be new inventions.With the permission of Neil Sloane, we have obtained a opy of the En-ylopedia and HR uses this to highlight number theory onepts expressedas integer sequenes whih are not in the Enylopedia. In e�et, this modelsanother aspet of theory formation in mathematis { referene to the mathe-matial literature in order to hek the novelty of results and to present newresults in the orret ontext.



7.5 Conjeture Making Using the Enylopedia of Integer Sequenes 111To hek whether a onept is in the Enylopedia, HR �rst needs topresent its onepts as integer sequenes. Three onept types are trans-formed into integer sequenes:� Number types suh as prime numbers are presented in numerial order:2; 3; 5; 7; 11; 13; 17; 23; 29; : : :� Funtions taking an integer to an integer, suh as the � funtion are pre-sented by taking the output for the integers 1,2,3 and so on:�(1); �(2); �(3); �(4); : : : = 1; 2; 2; 3; : : :� Subobjet onepts, suh as prime fators are presented by writing everysubobjet in numerial order for the integers 1; 2; 3; and so on:prime fators(1) = fg; prime fators(2) = f2g; prime fators(3) = f3g;prime fators(4) = f2g; prime fators(5) = f5g; prime fators(6) = f2; 3g;: : :so the sequene is presented as:2; 3; 2; 5; 2; 3; : : :Many sequenes in the Enylopedia are of these types. In partiular, thethree examples given above are sequenes A000040, A000005 and A027746respetively.One written as a sequene, to tell whether a onept is present in theEnylopedia, HR �rst uses the Prolog de�nition to extend the sequene upto a user-spei�ed limit, for example up to 500. To do this in the ase ofnumber types suh as primes, HR generates the integers 1 to 500 and testswhether they are of the orret type. To extend sequenes of the seond andthird types above, HR starts with the integers 1 to 500 and uses the Prologde�nition to generate the output for eah integer. This is possible for thefuntions as the ode HR produes is able to produe the output for a giveninput integer. In the ase of subobjets types, HR uses the user-supplied odeto generate subobjets for the input integer and uses the Prolog de�nition ofthe onept to prune those not �tting the desription.After extending the sequene, HR �nds any sequenes in the Enylopediawhih share the terms of the extended sequene. If no math is found, thesequene is deemed to be novel. Of ourse, this approah is problemati ifthere is a sequene in the Enylopedia whih is di�erent to the one beinginvestigated, but shares the same initial terms. However, we have not foundthis to be a serious limitation, and in ases where we think a sequene isnovel, we investigate this further by alulating more terms.



112 7. Making Conjetures7.5.2 Conjeture TypesThe Enylopedia ontains muh information about eah sequene, inlud-ing a de�nition, the �rst terms of the sequene and some further semantiinformation. For eah sequene, S, we took the following information: (a) theterms of S, (b) the desription of S, () the keywords desribing S and (d)the names of other sequenes related to S. This information was transformedinto a Prolog program whih HR has aess to.The onjetures HR �nds using the Enylopedia all assoiate a sequenefrom the Enylopedia with a sequene of interest hosen by the user. Wegive formal de�nitions below, but as an overview, the user an ask HR to�nd sequenes whih are:� The same as the sequene of interest, whih result in equivalene onje-tures.� Subsequenes or supersequenes of the sequene of interest, whih result inimpliation onjetures.� Always less than or greater than the sequene of interest, whih result inonjetures involving inequalities.� Disjoint from the sequene of interest, whih result in non-existene on-jetures.Note that HR an only use the data supplied in the Enylopedia, whihis very heterogeneous. For example, one sequene may have the �rst 100terms stored, but another may have only 50. For this reason, any relationshipbetween two sequenes is de�ned in terms of the entries in the sequene,rather than the mathematial de�nitions of the sequenes. Given a sequene,S, we use the following notation and de�nitions:� We write s 2 S if s is a term of S.� We write jSj for the number of terms in the Enylopedia for S.� We write Sk for the kth term of S.� We write Smin and Smax for the smallest and largest terms of S respetively.� The range of S is the set of integers between Smin and Smax inlusive,i.e. range(s) = fSmin; : : : ; Smaxg.For an example sequene, S, we use A000040, the prime numbers, whih hasthese terms in the Enylopedia:2; 3; 5; 7; 11; 13; : : : ; 271There are 58 terms, so jSj = 58 and range(S) = f2; 3; 4; : : : ; 271g beauseSmin = 2 and Smax = 271.



7.5 Conjeture Making Using the Enylopedia of Integer Sequenes 113Using these initial de�nitions, we an de�ne four ways in whih two se-quenes, S and T an be related:[1℄ S is a subsequene of T if all the terms of S whih are in the range of Tare also terms of T . i.e. 8 s 2 S s.t. s 2 range(T ); s 2 T . Supersequenesare de�ned similarly.[2℄ S and T are equivalent if S is a subsequene of T and T is a subsequeneof S.[3℄ S and T are disjoint if they share no terms, i.e. 8 s 2 S; s =2 T .[4℄ Letting k be the smallest of jSj and jT j, then S is less than T ifSi � Ti for i = 1; : : : ; k:For an example of subsequenes, we look at square numbers and odd squarenumbers:S = f1; 4; 9; 16; 25; 36; : : : ; 1849g [A000290, square numbers℄T = f1; 9; 25; 49; 81; 121; : : : ; 5625g [A016754, odd square numbers℄We see that the range of S is f1; : : : ; 1849g and the range of T isf1; : : : ; 5625g. Therefore, T is a subsequene of S beause all the terms ofT whih are in the range of S, namely 1; 9; 25; 49; : : : ; 1849 are also terms ofS. Therefore, when it uses the subsequene de�nition, HR orretly identi�esthat the odd square numbers are a subsequene of the square numbers, andthe onjeture an be stated as an impliation onjeture:n is an odd square number ) n is a square number.It is important that the terms of S being looked at are in the range of T , asit is unertain whether or not a term of S outside the range of T is indeed aterm of T .The interpretation and exat statement of the onjetures is left to theuser, and depends on whether the two sequenes are prediates or funtions(information whih is not usually stored expliitly in the Enylopedia, sois not available to HR). We've seen above that subsequene onjetures areinterpreted as impliation onjetures. Disjoint onjetures are often inter-preted as non-existene onjetures. For example, HR noties that even num-bers are disjoint with odd numbers, whih is interpreted as the onjeture:no number an be both odd and even.With less-than sequenes, suppose that sequene A was found to besmaller than another, B. If both were number types, the onjeture is mostsimply stated as:The nth number of type A is always less than or equal to the nth number oftype B.



114 7. Making ConjeturesHowever, if A and B are sequenes generated by funtions f and g, theonjeture is most simply stated as:8 n 2 N; f(n) � g(n):7.5.3 Pruning MethodsThe de�nitions of how two sequenes an be related are fairly relaxed to opewith irregularities in the data. In pratie, too many onjetures are foundand HR also has methods for pruning the output whih the user an instrutHR to employ or not.Firstly, HR an impose onditions on the sequene found in the Eny-lopedia. For example, we often stipulate that the number of terms must beover a ertain number, beause otherwise the onjetures would be based onthe evidene of only a few numbers. HR an also prune sequenes using thefollowing measure:� The density of a sequene, S, is alulated as:density(S) = jSjjrange(S)jThis measures how spread out the sequene is along the number line, andwe often prune those whih are too spread out. These are often uninterestingbeause HR's sequenes tend to be more dense on the initial part of thenumber line and relationships with sparse sequenes often turn out to bebeause the sequenes do not overlap on the number line, as disussed below.HR also uses semanti information to prune the hoie of T :� Keywords. The user an speify that T must be desribed in the Eny-lopedia by partiular keywords suh as \ore" and \nie".� Importane. The user an speify that T must be assoiated with a ertainnumber of other sequenes in the Enylopedia.� Word in Desription. The user an speify that ertain words, suh as\prime", do (or do not) appear in the desription of the sequene.For example, when looking for subsequenes of prime numbers, many obviousspeialisations of primes are output. Therefore, it may be useful to prune anysequenes with the word \prime" in their de�nition.The seond way to prune the output is to measure a property of thepair of sequenes. Given a sequene of interest, S, and the sequene foundin the Enylopedia, T , the following numerial measures provide thresholdsfor pruning:



7.5 Conjeture Making Using the Enylopedia of Integer Sequenes 115� The number of shared terms of S and T is alulated as:jfa : a 2 S & a 2 Tgj:� The range overlap of S and T is alulated as:jrange(S) \ range(T )jjrange(S) [ range(T )j� Letting k be the smaller of jSj and jT j, the di�erene of S and T isalulated as: 1k kXi=1 abs(Si � Ti)where abs(X � Y ) is taken as the absolute value of X � Y .We have experimented with normalising these measure by dividing bythe length or the range of the sequenes, but found the original measures ase�etive and easier to use.The number of shared terms is useful when looking for subsequenes, be-ause by the above de�nition, if the ranges of two sequenes are disjoint, theyare subsequenes of eah other. The number of shared terms measure guar-antees that at least some terms of S appear in T whih redues the numberof sequenes output. In pratie we usually stipulate that the subsequeneshave at least four terms in ommon with our sequene of interest.The range overlap measure is useful when �nding pairs of disjoint se-quenes, as this ensures that their terms are distributed over the same partof the number line and yet they share no terms, whih may be interesting.In pratie, we stipulate that the ranges overlap by at least 50%, i.e. halfthe integers in either range are in both ranges. However, we often have toexperiment with this to produe interesting results.The di�erene measure is useful for narrowing down the number of re-sults when looking for smaller sequenes. Inequality onjetures an be usedto bound one funtion by another (and possibly redue omputation time).It is therefore desirable to have lose bounds, and the di�erene measureenourages this.The pruning methods are very e�etive. For example, without any pruningmeasures at all, 2037 sequenes are onjetured to be subsequenes of thesequene of square numbers. By setting the term overlap minimum to �ve,the number of onjetures is redued to 125. If we further tell HR not tooutput any sequenes with the word \square" in the desription (whih willprobably lead to dull onjetures), the number is redued to just 61, inludingthe onjeture that integers with nine divisors are always square numbers(whih is true { an equivalent de�nition for square numbers is as having anodd number of divisors).



116 7. Making Conjetures7.5.4 An Example ConjetureIn a session whih we present in full in xB.4, HR was used to produe 50onepts in number theory. We then instruted it to identify those oneptswhih ould be presented as sequenes whih were not in the Enylopediaand list them in order of omplexity (as de�ned in x9.3.1). The sequene fromHR's 47th onept (atually the 2nd onept listed in terms of omplexity)had these �rst terms:2; 3; 4; 5; 7; 9; 11; 13; 16; 17; 19; 23; 25; 29; 31; 37; 41; 43; 47; 49; 53; 59; 61; 64; : : :and this de�nition:[n℄ s.t. 9 m (m = jfd 2 N : d jI gj & 2 = jfe 2 N : ejmgj)whih meant that HR had de�ned the onept of integers for whih the num-ber of divisors is prime. Firstly, the sequene was double-heked against theEnylopedia by alulating the terms less than 500 and heking whether asequene with the same terms was in the Enylopedia. HR ould identify nosequene whih its invention mathed, so the onept was missing from theEnylopedia. This was HR's �rst disovery. The sequene has been subse-quently submitted and aepted by Sloane into the Enylopedia, being givennumber A009087.Next, HR was asked to identify sequenes from the Enylopedia whihwere subsequenes of the new sequene. The �rst answer produed was se-quene A023194, whih has this desription in the Enylopedia: \sum ofdivisors of n is prime". When we interpreted this result, we saw that HRhad made the rather elegant onjeture that if the sum of the divisors of aninteger is prime, then the number of divisors will also be prime. i.e.8 n 2 N �(�(n)) = 2 ) �(�(n)) = 2 :The onjeture was suggested on the evidene of only the integers up to500. To provide further evidene, HR was asked to use the Prolog de�nitionfor onept 47 to hek that all the terms of A023194 had the required prop-erty. The terms of sequene A023194 go up to 1,000,000, and all had theproperty suggested by the onjeture, so the onjeture was empirially truefor the numbers up to a million. Convined by this empirial evidene, weproved the theorem, and the proof is given in xC.2. We give more examplesof theorems found in this way in x12.3.



7.6 Issues in Automated Conjeture Making 1177.6 Issues in Automated Conjeture MakingOur study of automated onjeture making tehniques both in the ontext oftheory formation and in terms of mathematial disovery has identi�ed someissues whih we summarise here.7.6.1 Choie of Conjeture Making TehniquesThe four types of onjeture have onsiderable overlap. To illustrate this,we an write1 Fermat's Last Theorem in four di�erent ways. Firstly as anequivalene onjeture:8 a; b; ; n 2 N; (an + bn = n has solutions () n = 1 or n = 2 );then as a non-existene onjeture:8 a; b; ; n 2 N; an + bn = n where n > 2 has no solutions,as an appliability onjeture:8 a; b; ; n 2 N; an + bn = n only has solutions when n is 1 or n is 2 ;and �nally as an impliation onjeture:8 a; b; ; n 2 N; an + bn = n has solutions ) n = 1 or n = 2 :One way to avoid making the same onjeture in a variety of di�erentformats is to restrit the searh to look for onjetures of a single format.For example, it may be possible to over a large number of onjetures withonly equivalene results. However, to make Fermat's Last Theorem as anequivalene onjeture, it is neessary to have already invented the oneptof integers, n, for whih n = 1 or n = 2. A prodution rule able to introduethis onept would introdue onepts of the form: [N ℄ : n = a or n = b forall pairs a; b 2 N. In a theory formation setting, suh a prodution rule isundesirable beause it would produe many dull onepts of a similar nature.Similarly, to make Fermat's Last Theorem as a non-existene onjeture, theonept of integers, n for whih n > 2 would have to be present in the theory.Again, a general prodution rule whih produed this onept would generatea plethora of dull onepts.To make Fermat's Last Theorem as an appliability onjeture, solutionsto the equation are sought, and a program would notie that only solutionswhere n = 1 or n = 2 are found. It would inlude the onept of n suhthat n = 1 or n = 2 in the onjeture statement, but does not need tointrodue this or any other superuous onepts into the theory. Hene ina theory formation setting, it is better to make Fermat's Last Theorem as1 Taking x 2 N to mean x is an integer and x > 0.



118 7. Making Conjeturesan appliability onjeture so that we do not have to introdue superuousonepts. This reinfores our deision to enable HR to make onjetures ina variety of ways. However, as with onept formation, we have been arefulnot to implement spei� tehniques designed to �nd a partiular onjetureas this would detrat from the generality of our work.7.6.2 When to Chek for ConjeturesAnother issue in theory formation is when to hek for onjetures. In the aseof HR, where eah onept is built from the data tables of previous ones, wemake it look for equivalene and non-existene onjetures every time a newonept is introdued. This is beause if an equivalene onjeture is missed,then two onepts have the same data tables, and if both are maintainedthere will be a dupliation of e�ort when forming new onepts. Similarly, ifa non-existene onjeture is missed, there will be a onept with an emptydata table, from whih it will not be possible to produe more onepts. Bylooking for non-existene and equivalene onjetures immediately, HR keepsits theories tidy.On average eah onept appears in �ve equivalene onjetures (with theearlier ones appearing in more than the later ones). This is usually suÆientto enable HR to assess the interestingness of the onepts using onjetures.This, along with the desire to keep the theory tidy are the main reasonsHR forms onjetures during theory formation. As suÆient equivalene andnon-existene onjetures are produed already to assess the onepts, thereis no need to produe more onjetures for the sake of it. Thus in pratie,impliation and appliability onjetures are not made during theory forma-tion, although they ertainly ould be. Instead, HR an be instruted to lookfor these types of onjeture after a theory has been produed, to enable theuser to better understand the onepts HR has de�ned.7.6.3 The Use of Data and Pruning MethodsThe question of whether to use data or other semanti and syntati infor-mation to make onjetures has to be addressed also. There is no reason inpriniple why automated onjeture making annot be failitated by look-ing at the de�nitions of onepts and prediting that a pattern might ourbetween onepts. As disussed in Chapter 4, this approah has not been fol-lowed in the HR projet, as the onept formation is example-based, whihmade it simple and e�etive to make onjetures empirially. This leads to afurther question of how to use the data available. In ases where the eÆienyof the program is a problem, it may be better to make onjetures using onlysome of the data, and then use all the data later to support the onjeture.However, HR does not have these eÆieny problems, so it uses all the dataimmediately.



7.6 Issues in Automated Conjeture Making 119Another way to speed up eÆieny is to prune the onjetures beforeheking them empirially. For example, if HR ould predit in advane thata ertain onjeture would be uninteresting, it ould disard the onjeturebefore performing the empirial test. In the ase of the HR program, whenforming a theory, the onjetures are used to assess the onepts involved inthe onjetures, so we deided not to employ pruning tehniques. Pruningmethods may be desirable when there are too many onjetures output by apartiular tehnique. This is true in the GraÆti program and is true whenwe use the Enylopedia of Integer Sequenes to make onjetures.7.6.4 Other Conjeture FormatsOther onjeture types whih HR annot make diretly at present inlude�nding linear relations among numerial invariants. For example, given nu-merial invariants I1(G); : : : ; Il(G) of a graph, G, onjetures of the form:lXi=1 kiIi = 0; (ki 2 R)ould be sought. It would be diÆult for HR to �nd suh onjetures usingonept formation and its present onjeture �nding tehniques, as it wouldmean inluding onepts whih were summations of invariants, suh as:[G;n℄ : n = k1(I1) + : : :+ kl(Il)If HR were to introdue suh onepts in its usual fashion, it is unlikelythat it would over enough to eÆiently �nd those whih sum to zero. Manyuninteresting summations would also be introdued. A better method wouldbe to implement the algorithm for �nding linear relations used by the AGXprogram as disussed in x2.5.2.Also, it would be useful for HR to mimi the GraÆti program disussedin x2.5.1, and use the invariants to make inequality onjetures of the form:lXi=1 kiIi � kjIj (ki 2 R)Finally, we note that the non-existene and appliability onjeture typesdesribed above are part of a larger family whih disuss the number ofexamples satisfying a onept's de�nition. The range of onjetures of thisformat inlude, for prediates P :(i) There are no examples for P . [Non-existene℄.(ii) There is a unique example for P . [Uniqueness℄.(iii) There are a �nite set of examples for P .(iv) The only examples for P are fa; b; : : :g. [Appliability℄.(v) There are an in�nite number of examples for P .



120 7. Making ConjeturesHR makes uniqueness onjetures (type (ii) above) when the size produ-tion rule is followed by the split rule to produe the onept of entities withexatly one example for P . An equivalene onjeture is then made whihstates that all entities have this property (i.e. the equivalene of the oneptwhih just desribes entities and the onept whih desribes entities withexatly one example is stated). HR doesn't make onjetures of type (iii) or(v) above, but it would be easy to implement a tehnique to deide whihonjeture to make based on the number of examples in the theory for ertainonepts. For example, if the perentage of examples satisfying the de�nitionof a onept is greater than, say, 30%, then HR ould make the onjeturethat there are in�nitely many examples whih satisfy the de�nition.7.7 SummaryWe have looked at how, why and when to make onjetures while forming atheory. We identi�ed four types of onjeture in mathematis and desribedhow HR makes onjetures of these types. We have shown that there is someoverlap in the overage of these types, but justi�ed why HR should be ableto make onjetures of all four types.We highlighted three reasons to form onjetures. Firstly, when forminga theory, if equivalene and non-existene onjetures are sought, then thetheory an be kept free of repeated onepts and those with no examples.These onjetures are looked for during theory formation after every newonept is introdued. Seondly, the onjetures whih a onept is involvedin an be used to assess the onept, whih will improve the heuristi searh,as disussed in Chapters 9 and 10. These onjetures must also be madeduring theory formation. Thirdly, the user may want to make onjeturesabout partiular onepts to inrease his or her understanding of the onepts.These onjetures an be made after a theory has been formed.We have also looked at the appliation of onjeture making to mathe-matial disovery and desribed how HR an use the Enylopedia of IntegerSequenes to �nd onjetures about sequenes of interest. The tehniques wedeveloped to work with the Enylopedia ould be employed with a similardatabase of onepts in a di�erent domain. For example, notiing that all theexamples of one type of group are examples of another type is equivalent tonotiing that a sequene is a subsequene of another, both are simply im-pliation onjetures highlighting a speialisation. It is beyond the sope ofthis book to omment further on the appliation of theory formation to auto-mated disovery in mathematis. However, we note that HR and GraÆti bothuse large knowledge bases to �nd simply stated onjetures and we hope thatsimilar methods an be used to �nd interesting and important onjetures infuture.



8. Settling Conjetures
1, 4, 6, 10, 12, 14, 22, 24, 26, 27, 32, 34, 38, 40, 46, 56, 58, 60, : : :A036438. Integers whih an be written as m� �(m) for some m.To settle a onjeture is to determine whether it is true or false. To say withertainty that a onjeture is true, one must supply a proof { a mathematialargument where the onlusion of the onjeture is shown to follow as a logialonsequene of the axioms and premises. Conjetures an also be disprovedwith logial arguments, or by providing a ounterexample { a situation inwhih the onjeture is learly false.Our aim is to provide a model of how onjetures an be settled auto-matially while a theory is being formed. HR relies in part on a third partytheorem prover and model generator, and the modelling of theory formationby integrating HR's onept formation and onjeture making apabilitieswith these programs is a major ontribution of this work. For various reasonswhih we explain throughout, we have enhaned this integration by providingHR with some theorem proving and ounterexample �nding apabilities of itsown. The various methods available to HR to prove onjetures are disussedin x8.2, and the methods available to disprove onjetures are disussed inx8.3. Before we disuss these methods, we give an overview of the reasons forsettling onjetures in x8.1.We only disuss how HR settles onjetures that arise as a theory is beingformed. It is beyond the sope of this book to disuss the appliation of theoryformation to either automated theorem proving or model generation, wherea onjeture is supplied by the user and the program is asked to prove ordisprove it.8.1 Reasons for Settling ConjeturesWe have inluded proving and disproving of onjetures in our model oftheory formation as it is an important part of theory formation. As disussedin x2.2.1, one of the major ritiisms of AM was that it made no attempt toprove the onjetures it made. With an ability to settle onjetures, HR an



122 8. Settling Conjeturesnot only make statements about onepts in the theory, but it an presentonly those whih are true. Settling onjetures as a theory progresses analso improve the quality of the theory. As disussed in Chapters 9 and 10,the �rst bene�t of settling onjetures is that information from the attemptsto do so an be used to assess the interestingness of the onepts involved inthe onjetures. This in turn drives the heuristi searh whih will hopefullyinrease the quality of the theory produed.We noted in x4.2.2 that one reason HR makes onjetures is to keep thetheory free of onepts with no examples and onepts whih are equivalentto previous ones. It is assumed that a onjeture is true until it is shownotherwise, and the relevant onepts are not allowed into the theory unlessthe onjeture is disproved. A bene�t to disproving onjetures is thereforethe introdution of new onepts to the theory. HR disproves onjetures by�nding a ounterexample { a new entity for the theory. New entities are fullyinorporated into the theory, with all the data tables realulated to inludethe data from the new example. Hene another bene�t of disproving onje-tures is additional data providing empirial evidene for future onjetures,thus ensuring that fewer false onjetures will be made.8.2 Proving ConjeturesAs disussed in Chapter 7, when putting together a theory, HR only makesequivalene and non-existene onjetures. As we are interested in settlingonjetures as a theory is formed, our implementation is limited to enablingHR to attempt to settle equivalene and non-existene onjetures only.8.2.1 Using Otter to Prove ConjeturesWhen working with �nite algebrai systems, and restrited to using onlythe ompose, exists, forall, math, and negate prodution rules, the oneptsHR produes an be written in a �rst order language aeptable as input tothe Otter theorem prover [MCune 90℄. We have found it diÆult to expressonepts of a numerial nature in a way aeptable to Otter. Therefore, innumber theory and graph theory (where many of the onepts are numerial),HR has no theorem proving abilities. Also, onjetures involving oneptsprodued by the size and split prodution rules will have some numerialontent and annot be looked at by Otter without a ompliated enoding.For this reason, HR doesn't attempt to prove suh onjetures.Otter was originally hosen beause it is one of the best resolution the-orem provers available, ahieving partiular suess in group theory { thedomain HR was originally developed in. Otter is also appealing beause ofthe simpliity of its input syntax. Equivalene, non-existene and impliationonjetures an easily be stated without �rst normalising them to onjuntive



8.2 Proving Conjetures 123set(auto).assign(max_seonds,10).assign(max_mem, 1000000).formula_list(usable).all ax1 ax2 ax3 (ax1 * (ax2 * ax3) = (ax1 * ax2) * ax3).all ax1 (ax1*id=ax1 & id*ax1=ax1).all ax1 (inv(ax1)*ax1=id & ax1*inv(ax1)=id).-(all a b  (a*b= & b*a=b <-> a*b= & b*a=b)).end_of_list.Figure 8.1 Example input to Otteror disjuntive normal form. As an example of the interation with Otter ingroup theory, HR makes the onjeture that these de�nitions are equivalent:[G; a; b; ℄ : a � b =  &  � a =  and [G; a; b; ℄ : a � b =  & b � a = bTo write the onjeture in a format aeptable to Otter, HR generates thede�nitions for both onepts and puts them on either side of an equivalenesign, then universally quanti�es all the variables in the onjeture thus:all a b  (a*b= & *a= <-> a*b= b*a=b).Beause Otter is a resolution theorem prover, as disussed in x2.6, the nega-tion of the onjeture is given to it, along with the axioms of group theory,so that a ontradition an be found whih proves the theorem. The entireinput to Otter for this onjeture is given in Figure 8.1.HR uses Otter as a blak box system { only the default settings are used.Furthermore, by default, HR allows Otter only 10 seonds to prove the theo-rem (set by the max_seonds ag in Otter's input), and a memory alloationof 1 megabyte (set by the max_mem ag). The user an hange these settingsvia HR if they wish to give Otter more time or memory. If Otter proves thetheorem, HR reads a max_proofs ag in the output, and also extrats a prooflength statisti, whih is used later to assess the onjeture (see x10.2.1). Ot-ter fails to prove onjetures either beause it has run out of time or it hasrun out of things to do. In the �rst ase it returns a max_seonds ag. In theseond ase it returns an sos ag, whih stands for \set of support", the listof lauses that an be resolved. This ag means that Otter has exhausted itsset of support and annot proeed further. Otter proves the above examplein a fration of a seond.HR an also pass non-existene onjetures to Otter. Suppose thatHR makes the onjeture that no examples of the onept with de�nitionP (a; b; : : :) exist. The statement of the onjeture is:�a; b; : : : s.t. P (a; b; : : :):However, as Otter requires the negation of the onjeture to prove the theo-rem, HR only needs to pass the onept de�nition, along with suitable exis-tential quanti�ation to Otter.



124 8. Settling ConjeturesFor example, HR �nds that the group theory onept:[G; a; b℄ : a � b = b & a 6= idhas no examples, and the statement of this fat, as passed to Otter, is:exists a b (a*b=b & -(a=id)).In the following setions, we disuss how equivalene onjetures undergovarious preparatory proesses before being proved. This is to improve Otter'shanes of proving ompliated equivalene onjetures. We have not foundit neessary to help Otter with non-existene onjetures in a similar way, asit usually has little trouble proving them in the given time limit.8.2.2 Sub-onjetures and Prime ImpliatesUnless the user expliitly instruts HR to do so, it will not pass entire equiv-alene onjetures straight to Otter. To give Otter a better hane, HR �rstsplits eah equivalene onjeture C into a set of impliation onjetureswhih we all sub-onjetures of C. Equivalene onjetures of the form:8 G;8 a1; : : : ; ai 2 G;P1(a1; : : : ; ai) & : : : & Pn(a1; : : : ; ai)()Q1(a1; : : : ; ai) & : : : & Qm(a1; : : : ; ai)are split into these sub-onjetures:P1(a1; : : : ; ai) & : : : & Pn(a1; : : : ; ai)) Q1(a1; : : : ; ai)...P1(a1; : : : ; ai) & : : : & Pn(a1; : : : ; ai)) Qm(a1; : : : ; ai)and these sub-onjetures:Q1(a1; : : : ; ai) & : : : & Qm(a1; : : : ; ai)) P1(a1; : : : ; ai)...Q1(a1; : : : ; ai) & : : : & Qm(a1; : : : ; ai)) Pn(a1; : : : ; ai)These sub-onjetures are usually easier to prove than the overall onje-ture and if all of them are proved, the original must also be true. To enableHR to perform this deomposition, we di�erentiate between onepts formedusing the ompose rule and the other onepts using the de�nition stated inx6.9.1: a onept is a fat if onstruted by any prodution rule other thanompose.



8.2 Proving Conjetures 125For example, the group theory onept of ommutative pairs:[G; a; b℄ : 9  2 G (a � b =  & b � a = )is lassed as a fat onept as it was produed by the exists prodution rule.However, this onept:[G; a; b; ℄ : a � b =  & a � a = bis a onjuntion of two fats, (a � b = ) and (a � a = b), and HR knows this,beause it was produed using the ompose prodution rule. Note that usergiven onepts, whih were not onstruted by any prodution rule, are alsolassed as fats. To pass an impliation suh as a�b =  & �a = ) b�a = bto Otter, it is written as:all a b  (a*b= & *a= -> b*a=b).As HR knows the onstrution history of every onept in the theory, itan write the de�nition of any onept as a omposition of fat onepts. So,for example, if onept A was formed by a onjuntion of onepts B and C,B was a fat but C was itself a onjuntion of fats D and E, then HR wouldknow that A should be written as a onjuntion of fats: A = B & D & E.Eah equivalene onjeture omprises a left hand and right hand onept,so the onjetures an be split orretly into sub-onjetures, beause theonepts an be split into onjoined fat onepts.By splitting eah equivalene onjeture into a set of sub-onjetures, theproblem of proving equivalene onjetures is transformed into the problemof proving impliation onjetures of the form:P1(a1; : : : ; ai) & : : : & Pj(a1; : : : ; ai)) Pk(a1; : : : ; ai) (8.1)We will refer to the set of fats fP1; : : : Pjg as the premises of the impliationonjeture, and to the fat Pk as the goal.To prove the impliation onjeture, we �rst note that when Pk is amongthe set fP1; : : : ; Pjg, the result is trivially true and HR is able to notie whenthis is the ase and at aordingly. Also, HR stores all impliations and theresult of trying to settle them. Therefore, if the same one arises twie, HRalready knows whether it is true or not, so there is no dupliation of e�ort.Furthermore, if HR has already proved that a subset of the premises impliesthe goal, the impliation onjeture follows as a orollary. For example if thisresult: P1(a1; : : : ; ai)) Pk(a1; : : : ; ai)had already been proved, then sub-onjeture 8.1 above would follow as animmediate orollary. Hene, before trying to prove any impliation onjeture,HR looks for previously proved ones with the same goal, but a subset of the



126 8. Settling Conjeturespremises. This is omputationally expensive, but the number of premises isnot usually large, so the e�et is not drasti. We an redue omputation timeby restriting the searh to only looking through prime impliates, whih arede�ned as follows. Given an impliation onjeture S with goal G, then:� A set of prime impliants of S are a subset of the premises whih implyG for whih no smaller subset of the premises imply G.� If a set of prime impliants, fQ1; : : : ; Qig of S have been found, then theorresponding prime impliate is: Q1 & : : : & Qi ) G.In e�et, given an impliation onjeture to prove, if a set of prime impliantsis found, then a more general theorem (a prime impliate of the theory) hasbeen proved, with the original impliation following as a orollary. It is desir-able to �nd the most general results so that in the future, more impliationonjetures will follow as orollaries. Also, we only need to store and searhover the prime impliates when looking for a previously proved onjeturefrom whih the urrent one follows as a orollary. Therefore, whenever HRis asked to prove a sub-onjeture suh as (8.1) on page 125 above, it �rstextrats every subset of the premises and tries to prove that they imply thegoal. By default, HR will use its own proedure (as desribed in x8.2.3) toprove prime impliates, and only if this fails will it invoke Otter.Every subset of the premises is tried until a set of prime impliants isfound, whih may turn out to be the entire set of premises. HR stops oneprime impliants have been found, beause the original impliation onjeturefollows as a orollary. It then stores the orresponding prime impliate in aseparate database, to be used by HR to prove theorems, as disussed in x8.2.3.There are more eÆient algorithms for �nding prime impliants and primeimpliates of a theory, suh as the PIGLET algorithm [Jakson 92℄, and thePI algorithm [Ramesh et al. 97℄. However, eÆieny hasn't been a problemas the onjetures are usually quikly handled by Otter.In the set of onjetures HR tries while looking for prime impliants, somemay be false. If Otter fails, then the statement is taken to be false. This maynot be the ase, as the onjeture may be true but Otter may have run out oftime. Hene HR may miss sets of prime impliants as Otter annot prove theyimply the goal. These oasions are not fatal, however, as it simply meansthat HR has missed an opportunity to dismiss an impliation onjeture as aorollary to a more general result rather than using Otter to prove it outright.As an example of �nding prime impliants, in group theory the followingimpliation onjeture arises:8 G;8 a; b;  2 G; a � b =  & a = id) a � b = b: (8.2)To �nd the prime impliants, HR �rst tries to prove:8 G;8 a; b;  2 G; a � b = ) a � b = b;but Otter fails (as it is false). Next, HR asks Otter to prove:



8.2 Proving Conjetures 1278 G;8 a; b;  2 G; a = id) a � b = b; (8.3)and this time Otter is suessful. Hene, HR has found prime impliants forthe original impliation onjeture, and beause (8.3) is true, (8.2) must alsobe true. So, not only has HR proved the onjeture, it has found a primeimpliate from whih the result follows as a orollary. This means that thereis no need to prove any future sub-onjeture where the goal is (a � b = b) ifthe fat (a = id) is in the premises. Therefore, the extra e�ort HR puts in to�nd prime impliates pays dividends when attempting to prove impliationonjetures later. Note that, as with the impliation onjetures themselves,HR stores all the prime impliates it tries along with the results of trying toprove them, so that there is no dupliation of work.8.2.3 Using HR to Prove Impliation ConjeturesTo reap, given an impliation onjeture to prove, we have established thatif HR �nds a previously proved one with the same goal but with a subset ofthe premises of the original, the new impliation onjeture is a trivial onse-quene of the previous, more general, result. It is better for HR to prove im-pliation onjetures as orollaries of previous results than have Otter provethem, as there are overheads involved in alling Otter, namely writing andreading �les and invoking Otter. For this reason, we implemented a simpleforward reasoning theorem prover whih works harder to prove that an im-pliation onjeture follows as a orollary to previously proved results.Given an impliation onjeture C with goal G and premises P0, HR looksthrough the set of prime impliates it has olleted and �nds any where thepremises are a subset of P0. If the goal of suh a prime impliate is notalready in P0, then it is added to P0. HR also reords whih prime impliatewas responsible for the introdution of eah new premise. Starting again withthe enlarged set of premises P1, HR looks for more prime impliates whihhave a subset of P1 as their premises. This proess ontinues until eitherno more premises have been added or the goal G of the original impliationonjeture has been added.If G is added to the set of premises, then C has atually been proved.This is beause eah prime impliate has been previously proved to be true,so the goal of the prime impliate follows as a logial onsequene of thepremises. As the premises of the prime impliate are premises of C, the goalof the prime impliate is true and an be added as a premise. Therefore,using previously proved results, HR adds true statements to the premisesuntil the goal G is added, whih must also be true. Working bak from theprime impliate X , whih was responsible for introduing G, HR determinesthe set of prime impliates whih were neessary for the introdution of thepremises of X . This ontinues all the way bak to the prime impliates whosegoals were premises of C. The entire set of prime impliates introdued isthen presented as a proof of C.



128 8. Settling ConjeturesAs an example, during a group theory session, HR made this equivaleneonjeture:8 G;8 a; b;  2 G;a�b =  & a� = b & b = id () a�b =  & �a = b & a�a = b (8.4)The non-trivial sub-onjetures of this are:[1℄ a � b =  & a �  = b & b = id)  � a = b:[2℄ a � b =  & a �  = b & b = id) a � a = b:[3℄ a � b =  &  � a = b & a � a = b) a �  = b:[4℄ a � b =  &  � a = b & a � a = b) b = id:(With universal quanti�ation assumed).Sub-onjetures [1℄ and [2℄ had already been proved in onnetion withprevious onjetures, so they did not need to be proved again. At this stageof the theory, HR had found many prime impliates, inluding these:(i)  � a = b & a � a = b)  �  = b(ii)  � a = b &  �  = b) a �  = b(iii) a � b =  & a � a = b) b � a = (iv) b � a =  &  �  = b)  = inv(a)(v) a � b =  & b � a =  &  � a = b) a �  = b(vi) a �  = b &  = inv(a)) b = idWhen HR ame to prove sub-onjeture [3℄, it �rst tried to �nd a set of primeimpliants and proved this more general result:(vii)  � a = b & a � a = b) a �  = b:This was proved using prime impliates (i) and (ii) above. We display theproof of this by putting the onjeture above a line below whih the primeimpliates are presented. We highlight the goal of the original onjeture byputting a box around it above and below the line.(vii)  � a = b & a � a = b ) a �  = b(i)  � a = b & a � a = b )  �  = b(ii)  � a = b &  �  = b ) a �  = bWe see that the fat (� = b) was added as a premise due to prime impliate(i). Beause of this, the premises of prime impliate (ii) were now present,



8.2 Proving Conjetures 129and so the goal of this was added. This was also the goal of the originalonjeture, so the proof was ompleted and sub-onjeture [3℄ followed as animmediate orollary.When HR ame to prove sub-onjeture [4℄, it ouldn't �nd any primeimpliants. However, it used sub-onjetures (i), (iii), (iv), (v) and (vi) togenerate the following proof of [4℄:[4℄ a � b =  &  � a = b & a � a = b ) b = id(i)  � a = b & a � a = b )  �  = b(iii) a � b =  & a � a = b ) b � a = (iv) b � a =  &  �  = b )  = inv(a)(v) a � b =  & b � a =  &  � a = b ) a �  = b(vi) a �  = b &  = inv(a) ) b = idHene HR had proved all the sub-onjetures, so onjeture (8.4) had beenproved.8.2.4 Details of HR's Theorem ProvingHR stores eah sub-onjeture as a list of pairs of the form, hC; �i, whereC is a onept number, and � is a permutation. Eah pair tells HR how towrite a fat in the onjeture { the onept provides the template and thepermutation determines the order in whih variables (letters) must be plaedin the template. The last pair in the list represents the goal fat and the othersare the premise fats whih are to be onjoined. Consider, for example, theseonepts in group theory:4: [G; a℄ : a � a = a5: [G; a; b℄ : a � a = bThe fat (a � a = a) is stored as h4; [1; 2℄i, the fat (a � a = b) is storedas h5; [1; 2; 3℄i, and the fat (b � b = a) is stored as h5; [1; 3; 2℄i. This lastpermutation indiates that letters a and b are to be swapped before beingplaed into the template.Therefore, this impliation onjeture:8 G;8 a; b 2 G; (a � a = a & a � a = b) b � b = a) (8.5)(whih is true in any algebrai system), is stored as the following list:[h4; [1; 2; 0℄i; h5; [1; 2; 3℄i; h[5; [1; 3; 2℄i℄:Note that a zero has been added to the �rst permutation as a plaeholder {it informs HR that three letters are required to write out the whole implia-tion onjeture, yet only two of them are needed to write the �rst fat. HR



130 8. Settling Conjeturesreads permutation [i; j; k℄ as: \the �rst letter goes in the ith position in thetemplate, the seond letter goes in the jth position and the third in the kthposition."There is a problem with this representation whih we an highlight if wesuppose that (8.5) was proved in a session, and later HR needed to prove thisonjeture:8 G;8 a; b;  2 G; (a � b =  & b � b = b & b � b = a) a � a = b) (8.6)This follows as an immediate onsequene of (8.5), whih is learer to see ifwe write (8.5) with letters a and b swapped:8 G;8 a; b;2 G; (b � b = b & b � b = a) a � a = b)This would be stored as the list:[h4; [1; 3; 0℄i; h5; [1; 3; 2℄i; h5; [1; 2; 3℄i℄Beause of the di�erene between fats h4; [1; 2; 0℄i and h4; [1; 3; 0℄i, HR wouldnot realise that it ould use (8.5) to prove (8.6), beause the permutationsare di�erent. To avoid missing opportunities in this way, HR must notiewhen the premises of a prime impliate appear in the premises of the sub-onjeture to be proved with di�erent permutations. One way to ahieve thisis to generate possible permutations dynamially as a sub-onjeture is beingproved. However, after some experimentation, we deided that this approahwas too ineÆient, as the same permutations were repeatedly generated.Instead, for every prime impliate HR �nds, it generates all the isomor-phi prime impliates and stores these so they an be used to prove latertheorems, with no dynami permuting neessary. This is also problematibeause the number of prime impliates generated is already high and allthese and their isomorphi ounterparts are searhed repeatedly every timeHR attempts to prove a sub-onjeture. There is a loss of eÆieny beausethe list greatly inreases when all permutations are added. However, theoverage of theorems that HR an prove inreases if it has aess to all iso-morphi prime impliates. We aknowledge that AC-mathing as desribedin [Denzinger & Gramlih 88℄ would be a more eÆient option here, but wehave not had time to implement this.Finally, we note that HR only needs to searh through the set of primeimpliates to prove theorems with the algorithm above, and not the entireset of proved sub-onjetures. This is beause if a sub-onjeture was usedto add a fat to the premises, then the prime impliate derived from thesub-onjeture would also be able to add the fat to the premises, hene theoriginal sub-onjeture is redundant. Also note that whenever HR proves animpliation onjeture using its forward reasoning mehanism, it is not addedto the set of prime impliates (even though it may be a prime impliate).This is beause the goal is derivable using the previous prime impliates, andtherefore the sub-onjeture is not required as a prime impliate.



8.2 Proving Conjetures 1318.2.5 Advantages of Using HR to Prove TheoremsAn advantage of using HR to prove sub-onjetures is eÆieny { sometimesHR will quikly dismiss a sub-onjeture as a trivial onsequene of previousresults, whereas using Otter to do so would involve overheads as disussedabove. Unfortunately, HR pays a prie to be able to prove sub-onjeturesitself, beause it has to extrat prime impliates of sub-onjetures, whih istime onsuming. However, HR stores every sub-onjeture and prime impli-ate it �nds, so there is no dupliation of e�ort and as a theory progresses,the number of sub-onjetures whih an be proved by HR greatly inreases.However, the proess of extrating prime impliates and forward haining toprove the theorems beomes time onsuming as a theory progresses. We om-pare the relative eÆienies of Otter and HR's forward reasoning mehanismin x11.3.2.Coverage is not an important issue, as we have yet to �nd a sub-onjeturewhih HR an prove using its simple algorithm that annot be proved byOtter. This is testament to Otter's ability and highlights the fat that whileHR's theorem proving is e�etive in this situation, the method it employs isnot very deep.Another advantage of using HR is that the proofs it produes are under-standable: a simple logial argument is given where new premises are foundusing a prime impliate, until �nally the goal is found. The example in x8.2.3shows how these proofs an e�etively portray the truth of the theorem.Resolution theorem proving is very e�etive, but the proofs it produes arediÆult for humans to follow. There are projets whih aim to present reso-lution proofs in a human readable way, suh as the ILF server [ILF 99℄, andwe hoped to link HR with a suh a program, but it was not possible to do soin the time available. Eah step in the argument that HR produes is basedon a prime impliate for whih HR does not provide the proof. However, it isusually the ase that the prime impliates HR uses are fairly easy to under-stand. Furthermore, mathematiians are used to seeing proofs where simplelemmas are used without proof. Indeed, if proofs of every lemma were givenin a proof, the argument ould beome diÆult to understand.Prime impliates often say more about a domain than the onepts oronjetures themselves. For example, TS-quasigroups are ommutative quasi-groups, Q, with the additional axiom that 8 a; b 2 Q; a � (a � b) = b. WhenHR was used in TS-quasigroup theory, it identi�ed these prime impliates:a � b = ) a �  = ba � b = ) b � a = a � b = ) b �  = aa � b = )  � a = ba � b = )  � b = a



132 8. Settling ConjeturesTherefore, if a � b = , then any pair of a; b; and  multiply together to givethe third. This is atually another way to axiomatise TS-quasigroups, so HRhad identi�ed the alternative axioms (although it didn't prove that they werealternative axioms).HR an present the prime impliates to the user in order of the diÆultyOtter had proving them. For example, in a reent group theory session, HRidenti�ed that Otter found these prime impliates diÆult to prove:8 a; b; ; a � b =  & b = inv(b) & a � a = b)  �  = b8 a; b; ; a � b =  & b �  = a & a � a = b) b = inv(b)The proof length statisti that Otter returns gives an indiation of the dif-�ulty of the proof. The proofs Otter found for the above theorems were oflength 21 and 17 respetively. Otter found these prime impliates easier toprove:8 a; b; ; a � b =  & a = id & b = inv(b))  = inv(b)8 a; b; ; a � b =  & b = id & a 6= id)  6= idas they both had proofs of length 6. Hene HR an rank the prime impliatesit produes whih may help the user to identify the most interesting ones, aswe shall see in x11.1.2 and x12.2.To summarise, while using HR to prove theorems doesn't improve over-age and may slow theory formation down, the proofs it produes are moreunderstandable than those produed by Otter. Also the prime impliates pro-dued as a by-produt an often help reveal the nature of a domain. We muststress, however, that the main reason we implemented this funtionality wasto model how a set of previously proved theorems is built up and used toprove later, more diÆult theorems.8.3 Disproving ConjeturesAll of HR's equivalene and non-existene onjetures are based on empirialevidene, whih inreases the hane of them being true. The number of falseonjetures HR makes depends on the theory it is looking at, the amount ofempirial evidene available, and the prodution rules it is using. However,the majority of onjetures produed (around 90%) in general are proved byOtter and HR. There are two exeptional types of domain where this is not thease: (i) algebrai systems with fairly unrestritive axioms, suh as monoids,where many of the onjetures made are false and (ii) algebrai systems withomplex and restritive axioms, suh as Robbin's algebra, in whih ase manyof the sub-onjetures annot be proved by Otter in a reasonable time limit.In theory, it would be fairly easy to enable HR to attempt to prove anddisprove a onjeture in parallel. In most domains however, as the majority



8.3 Disproving Conjetures 133of the onjetures are true, we deided that it is more eÆient to attempt adisproof only when all attempts to prove a onjeture have failed.Any onjetures whih annot be proved immediately are assumed to betrue until they are disproved. This is beause, if a non-existene onjeture isassumed to be false, then HR must keep a onept with an empty data tablein its theory, and if an equivalene onjeture is assumed to be false, HR mustkeep two onepts with equal data tables, whih will lead to dupliation ofe�ort in both ases.The reward for showing that a non-existene onjeture is false is theintrodution of a new onept (whih was originally thought to have no ex-amples). Similarly, the reward for showing that an equivalene onjeture isfalse is the introdution of a new onept (whih was originally thought to bethe same as a previous one). Furthermore, if the onjeture an be disprovedwith a ounterexample, then an example will have been found with a prop-erty whih no other example in the theory possesses. Therefore, adding thenew example will enrih HR's theory, and redue the probability of makingfalse onjetures later. As a default, HR only looks for one ounterexampleto a onjeture, although the user an speify that it looks for more. Whileadding an example enrihes the theory, often we have found that adding twois redundant, beause the seond is very similar to the �rst, thus provid-ing little variety to the theory, but slowing down the theory forming proessbeause of the extra data to be handled.We disuss here two ways in whih HR an �nd a ounterexample to aonjeture that HR and Otter have failed to prove.8.3.1 Using MACE to Find CounterexamplesThe main way HR �nds ounterexamples is to invoke the MACE model gen-erator, [MCune 94℄, written by the author of Otter. Otter and MACE aresister programs and have very similar input syntax. Very little work wasneeded to enable HR to ommuniate with MACE after we had enabled it toommuniate with Otter. As disussed in x2.6, MACE works by taking thestatement of the onjeture and using the Davis-Putnam method to gener-ate a ounterexample. In our situation, MACE produes an example of thealgebrai system (e.g. a group) for whih the onjeture does not hold.The interation with MACE is slightly di�erent from that with Otter, asMACE has to be told the size of the example (number of elements) that HRis looking for. As HR does not know in advane the size of an example whihwill disprove the onjeture, it asks MACE for an example of size 1, then size2, and so on, until size 8, after whih it is unlikely that MACE would sueed.HR spei�es that MACE an spend a maximum of 10 seonds on eah size,although this time limit an be altered. In this way, HR an spend up to 80seonds looking for a ounterexample. In pratie, however, MACE quiklydetermines that there are no examples in the smaller sizes and the averagetime to searh for ounterexamples is around 40 seonds. Also, as mentioned



134 8. Settling Conjeturesabove, in general only around 10% of onjetures are not proved by Otter orHR, so the time spent using MACE to �nd ounterexamples is not exessive.An alternative to looking for examples in inreasing order of size is tolook for examples of dereasing size, starting from some arbitrary size, whihmight �nd examples quiker. However, every example found is inorporatedinto HR's theory, i.e. all the data tables are realulated to inlude the datafrom the newly found example. So, in the interest of onserving memory,HR tries the smaller sizes �rst. The other advantage to this is that oftenthe smallest ounterexample is of partiular interest. For example in grouptheory, MACE �nds the smallest non-Abelian group in response to one ofHR's onjetures. As this is of size 6, it is interesting that there are no smallernon-Abelian groups. Note however, that HR has not shown that this is thesmallest non-Abelian group beause there may be a smaller ounterexamplewhih MACE fails to �nd. This is not true in the ase of Abelian groups, andin pratie we have not ome aross an example where MACE �nds a largerexample but not a smaller one.Another di�erene between the way HR uses MACE and Otter is thatequivalene onjetures are passed in their entirety to MACE, rather than thesub-onjetures of the onjeture. We experimented by passing MACE eahunproved sub-onjeture in turn but found it was often less e�etive thanpassing the entire equivalene onjeture, beause time was wasted tryingto disprove one sub-onjeture when another sub-onjeture was disprovedinstantly. Hene the default in HR is to disprove equivalene onjetures inone go, although it is possible for HR to try eah sub-onjeture separately,if the user spei�es this.When given only the axioms of a �nite algebrai system, HR starts withone example (as disussed in x5.4) and its onjetures tend to be false asthere is little evidene to base them on. As eah one is disproved by MACE,a new example is introdued as a ounterexample and the whole theory isrealulated to take into aount the new information. This realulation isexpensive, but these ourrenes are rare, so they do not slow down theoryformation too muh. For instanes of the examples whih are introduedduring a session, see xB.2 and xB.3.8.3.2 Using HR to Find CounterexamplesHR an also attempt to �nd ounterexamples without invoking MACE. Itdoes this using a simple generate and test method whih relies on the Prologde�nition of the onepts and also on the user supplying ode whih enablesHR to generate possible ounterexamples. For ertain algebrai systems, gen-erating examples is diÆult, for instane, there are only a few groups up toorder 8, and generating them is a problem in itself. Hene, the time HRspends generating groups (before even applying the test) is prohibitive, andHR is only employed to disprove onjetures in domains where it is easy togenerate examples.



8.3 Disproving Conjetures 135In partiular, we have supplied HR with some ode to generate quasi-groups, written as a onstraint satisfation program using the Sistus Prologlpfd module. The ode is fairly eÆient and an produe all quasigroups upto order 4 in less than a seond on a Sun Ultra 10. As disussed in Chapter6, for every onept HR �nds, it produes a Prolog lause whih an be usedto hek whether a given example is atually an example of the onept. Theode supplied by the user to generate the examples beomes the Prolog odefor the initial onept of quasigroups. Then, to �nd ounterexamples to aonjeture amongst the set of quasigroups HR generates, the Prolog de�ni-tions for the onepts in the onjeture are used to test whether any of theexamples generated disprove the onjeture.To disprove non-existene onjetures, HR simply produes the Prologode for the onept whih is thought to have no examples, generates exam-ples, and tests them using the Prolog ode. If HR generates an example whihsatis�es the onept's prediate, then it has disproved the onjeture. Equiva-lene onjetures state that all the examples for one onept are examples foranother, and vie versa. Hene, to �nd a ounterexample to an equivaleneonjeture, HR uses the Prolog ode for both onepts: it generates examplesand looks for one whih satis�es the prediate for one de�nition, but not theother. For example, in quasigroup theory, HR makes this false onjeture:8 Q; 9 a; b;  s.t. (a�b =  & a�b = b & b�a = a) () 9 d s.t. (d�d = d):It then uses the onstraint satisfation program to generate quasigroups andlooks for one whih has the property on the left hand side of the onjeture,but not the right hand side, or vie versa. It �nds this quasigroup whihdisproves the onjeture: � 0 1 2 30 1 0 2 31 2 3 0 12 0 1 3 23 3 2 1 0(Setting elements a = 0, b = 2 and  = 2 shows that a � b = , a � b = b andb � a = a, but there is no idempotent element, x, for whih x � x = x, henethe quasigroup is a ounterexample to the onjeture).Using HR to disprove onjetures an improve eÆieny. If there is a oun-terexample quasigroup of small order in HR's searh spae, it will be foundvery quikly, and it improves eÆieny in the early stages of a theory to useHR followed by MACE to �nd ounterexamples. However, we have foundthat as a theory progresses, the onjetures beome more involved and theounterexamples required are usually larger and beyond HR's reah. Hene,for eÆieny reasons, in quasigroup theory, HR's ounterexample �nding a-pabilities are usually turned o� after a ertain number of onjetures havebeen made.



136 8. Settling ConjeturesAs with Otter, we have found it diÆult to pass onjetures with a nu-merial ontent to MACE. However, as eah onept produed is assigneda Prolog de�nition, even those whih have a numerial ontent an be usedin a generate and test method. Hene, another reason to use HR's generateand test method is that it an be used to �nd ounterexamples to onje-tures involving numerial onepts produed by the size or split produtionrules. This improves the overage of the onjetures that HR an attempt todisprove.8.3.3 Finding Counterexamples in Non-algebrai DomainsAnother advantage to using HR to �nd ounterexamples is that the methodan be used in non-algebrai domains. Realling that a onjeture is assumedto be true, and that the reward for disproving one is a new onept and anew entity, it is worthwhile for HR to attempt to disprove onjetures inany domain. The generate and test method is not dependent on the domainbeing an algebrai system and only relies on the user supplying ode whihwill generate examples of the domain.In number theory, it is very easy to generate integers, so HR is e�etive at�nding ounterexamples to false onjetures. This also enables HR to builda theory of numbers starting with just one integer { the number one. Everytime HR disproves a onjeture, a new integer is added to the theory, andthe theory moves forward. For example, in a number theory session whereHR starts with only the number one, one of the �rst inorret onjeturesit makes is: 8 n 2 N; �(n) = n, where �(n) = number of divisors of n.The smallest ounterexample HR �nds is the number 3, and this is added tothe theory. Later, the onjeture is made that all square numbers have onedivisor, HR disproves this by showing that it is not true of the square number4 whih is also added to the theory, and the theory progresses.Beause of the nature of the number theory domain, where the subobjetsare integers themselves, we have to be areful that any integers introduedthrough onept formation are added as new entities. For example, HR in-vents the funtion of (�(n))2 whih squares the number of divisors of n. IfHR is working with only the integers 1 to 5, this introdues the number 9beause (�(4))2 = 9, and 9 must be added as a new entity. Whenever HR in-trodues a new onept in number theory, it heks whether any new entitiesneed to be added. Similarly, when it adds an entity whih has been found asa ounterexample to a onjeture, after it has realulated all the data tables,it heks whether any more new entities need to be added.If the new entities were not added, this would ause inomplete data tablesto be produed in the future whih would lead to an inorret theory andfalse onjetures being made. However, to stop a hain reation, where oneinteger after another is added, the user sets a limit (usually 50 or 100) for thesize of the largest integer to be added. Any table whih ontains an integerbigger than the limit is ignored, i.e. it is not used to build new onepts.



8.4 Returning to Open Conjetures 137While this is undesirable to a ertain extent, it is neessary to avoid formingonepts with inomplete data tables, whih would our if onepts involvinga number bigger than the limit were used to build new onepts.It is very easy to generate integers, but less eÆient to generate onnetedgraphs dynamially. For this reason, HR starts with the set of 141 onnetedgraphs with six or fewer nodes already omputed. Then, when trying todisprove a onjeture, HR simply looks through these, rather than generatingthem every time. HR an build a theory of onneted graphs starting withjust the trivial graph (one node, no edges), and every time a onjeture isdisproved, the ounterexample graph is added to the theory. For example,given only a few onneted graphs to work with, HR made the onjeturethat all onneted graphs with an endpoint are stars (and vie versa). The�rst ounterexample it found was this graph:
whih arose in x7.4.2 as the smallest graph with exatly one endpoint.Note that, as there is no theorem proving available to HR in non-algebraidomains, an attempt is made to disprove all onjetures. This does slowdown the theory formation, but the quality of the theory is improved asmore onepts and entities are introdued. The user an speify that HR onlyattempts to disprove onjetures for whih ertain measures of interestingnessare above a threshold, as disussed in Chapter 10. Also, HR is able to timehow long it takes to �nd a ounterexample. Sometimes, even though thegeneration of examples is quik, the testing stage may take too muh timeto hek all possible ounterexamples. Hene, a time limit of 10 seonds isusually imposed, but the user an alter this.8.4 Returning to Open ConjeturesOne of the major advantages to settling onjetures in a theory formationsetting is that onjetures whih were not settled when they were originallystated an be revisited after more information about a theory has ome tolight through the theory forming proess. Unfortunately, time has prohibitedus from enabling HR to employ any sophistiated tehniques for returningto open onjetures and proving them using greater knowledge gained fromfurther theory formation. We disuss the possibilities for this in Chapter 14.HR an, however, return to previous onjetures and disprove them usinga ounterexample found to a later onjeture. Often, the way one onjeture isstated may mean that MACE annot �nd a ounterexample to it in the timeavailable. However, the statement of a later onjeture might lead MACEto a ounterexample whih not only disproves the present onjeture, but



138 8. Settling Conjeturesalso the previous one. Hene, whenever HR disproves a onjeture, it returnsto all the open onjetures and attempts to show that the new example isa ounterexample to them also. It does this using the Prolog de�nitions asdisussed in x8.3.2. This approah an be e�etive, and we have doumentedsessions where one ounterexample has been used to disprove 12 previouslyopen onjetures.The value of returning to previous onjetures an be demonstrated withthe following example from ring theory. Early in the session, HR made thefollowing onjeture:8 R; (8 a 2 R; 9 b;  2 R s.t. b� = a) () (8 d 2 R; 9 e 2 R s.t. e�d = d)This says that all elements appear in the body of the multipliation tablefor the � operator if and only if every element has a left identity under �.This onjeture is false, but at the time HR made it, MACE ould �nd noounterexample within the 10 seond limit it was given. In fat, in a di�erentexperiment, MACE was given more time to �nd a ounterexample to thisonjeture and took 30 minutes and 56 seonds on a Sun Ultra 10.Later in the session, HR made this seemingly more diÆult onjeture:8 R;8 a 2 R;a � a = a & 8 b 2 R; b � b = b () 9 ; d 2 R; s.t.  � d = a& 8 e 2 R; e = e�1 & 8 f 2 R; 9 g 2 R s.t. f � g = fto whih MACE found the following ounterexample in just over a seond.+ 0 1 2 30 0 1 2 31 1 0 3 22 2 3 0 13 3 2 1 0 � 0 1 2 30 0 0 0 01 0 0 1 12 0 2 2 03 0 2 3 1Fortunately, this also disproved the earlier onjeture. Note that the multi-pliation table for � has eah element in the body, but only elements 0 and2 have left identities under �, so it is indeed a ounterexample to the earlieronjeture. In fat, this one ounterexample was responsible for disprovingfour previous onjetures inluding one for whih MACE atually runs outof memory trying to disprove. In total during the session, disproving onje-tures retrospetively aounted for 16 onjetures being settled whih wouldotherwise have remained open.Note that the following situation sometimes arises: HR has failed to settletwo equivalene onjetures stating that (i) onept A is equivalent to oneptB, and (ii) onept A is also equivalent to onept C. It �nds a new examplelater that disproves (i) and (ii), and it turns out that with the new data,onept B and onept C have the same data tables, and so the onjetureshould be made that C is equivalent to B, rather than adding C to thetheory. Hene HR is alert to the fat that sometimes disproving a onjeture



8.5 Summary 139retrospetively will not lead to a new onept, but to a new onjeture whihhas to be settled. In these ases, HR attempts to settle the new onjeturestraightaway, in the same way as if it were introdued during the usual theoryforming proess.See the semigroup session in xB.3 for an example of a ounterexamplebeing used to prove open onjetures.8.5 SummaryGiven the many di�erent ways to prove a onjeture, the order in whih HRattempts eah tehnique is important. We summarise here the default order,but note that it is possible for the user to hange this.Firstly, HR passes non-existene onjetures straight to Otter, but splitsequivalene onjetures into sub-onjetures. Equivalene onjetures areonly proved if all the sub-onjetures are proved. By default, HR exhaustsall the possibilities to prove the sub-onjetures itself before alling Otter.Given a sub-onjeture, S, HR will try to prove it in this order:(a) By showing that the goal of S is a premise, hene S is trivially true.(b) By showing that S has been proved previously.() By �nding a set of prime impliants of the sub-onjeture and showingthat the sub-onjeture follows as a orollary to the orresponding primeimpliate.To �nd a set of prime impliants of S, HR takes progressively larger subsetsof the premises and tries to prove that they imply the goal in this order:(i) By showing that it has been settled previously.(ii) By using the algorithm desribed in x8.2.3.(iii) By using Otter.Beause the subset of premises an beome the entire set, HR will eventuallytry to prove the whole sub-onjeture, either with its algorithm or with Otter.Finally, to enable HR to prove further sub-onjetures using its algorithm,it stores those prime impliates whih required Otter to prove them. It doesnot store prime impliates whih were proved using HR as these are impliedby the previous set of prime impliates.Using HR to onstrut proofs models an important proess in theoryformation: theorems are proved and used themselves as lemmas to help provemore diÆult theorems. By using Otter to prove prime impliates, HR buildsup a set of results whih it an use to prove later theorems, without refereneto the proofs of the prime impliates. In this way, proofs to more diÆulttheorems an be found based on results whih do not have to be proved again.



140 8. Settling ConjeturesOther advantages to using HR alongside Otter are improved presentation ofproofs and the identi�ation of prime impliates whih an be informativeabout the domain. Also, in enabling HR to use a generate and test methodto disprove onjetures, it an disprove onjetures in domains where Otterand MACE have limited abilities, in partiular, number theory and graphtheory.HR tries very hard to settle onjetures. It has two ways to prove andtwo ways to disprove onjetures, and will even take time to try and dis-prove onjetures retrospetively. By demonstrating how a ounterexampleto a onjeture an be used to disprove a previous onjeture, we have mod-elled how results found later in a theory an be used to answer earlier, openquestions. There are many onsiderations to be taken into aount when somany methods are available, and we hope to have overed some of the im-portant aspets. In partiular, it is important to determine in whih orderto try eah onjeture proving/disproving tehnique. As HR uses empirialevidene, more of its onjetures turn out to be true than false, hene thedefault for HR is to exhaust all possibilities for proving a onjeture beforetrying to disprove it.When trying to disprove a onjeture, a deision has to be made as towhether to spend more time looking for a ounterexample when the onje-ture is stated, or spend less time and hope that a ounterexample emergeswhen looking at a later onjeture. The default for HR is to spend a moderatelength of time (up to 80 seonds) trying to disprove eah unproved onjeturewhen it is stated, and hek whether eah open onjeture is disproved byany new examples whih have been added to the theory. It is often the asethat a ounterexample is found quikly to another onjeture whih turns outto disprove the earlier onjeture. Other onsiderations inlude whether tolook for smaller ounterexamples �rst, or larger ones. In HR's ase, anotheronsideration is whether to use its generate and test method, whih in someases is quiker, and in other ases is slower than the Davis-Putnam methodof MACE.Our main aim here has been to show that onjetures an be settledusing a variety of methods in a theory formation setting. Over the past threehapters, we have demonstrated that a theory ontaining many of the aspetsfound in mathematis texts (namely onepts, examples, ounterexamples,onjetures, theorems and proofs), an be produed automatially from thebare minimum of information, namely the axioms of a �nite algebrai systemor the simplest onepts in other theories. We now look at how to ontrolthis proess.



9. Assessing Conepts
1, 2, 14, 23, 29, 34, 46, 63, 68, 74, 76, 78, 88, 94, 116, 127, 128, : : :A036433. Integers where the number of divisors is a digit.One of the most interesting and diÆult questions we have addressed in thisresearh is how to estimate the worth of a mathematial onept. Whenforming a theory by building new onepts from old ones, there is always ahoie of whih old onept to build on, and how to produe a new oneptfrom it. In pratie this leads to a large searh spae, only some of whih anbe explored in a reasonable time. HR uses the general heuristi of identifyingand building on the most interesting onepts �rst. It is therefore importantto be able to estimate whether or not a onept is interesting and to be ableto order the onepts from the least interesting to the most interesting.The true value of a onept may only ome to light over time as theonept is investigated and found to appear in theorems, proofs and openonjetures or found useful for some reason. However, to be able to performa heuristi searh, a program must be able to make instant judgements abouta onept, so that the onepts an be ordered straight away. HR has waysto make an immediate assessment of a onept and it also models the way inwhih the true worth of a onept is assessed over time with measures whihare onstantly updated as the theory is formed.Interestingness in mathematis is a omplex and highly subjetive matter.Our approah has been to give the user many options for deiding whih typesof onept HR should �nd interesting in a partiular session, and allow thisto be hanged during a session. In pratie, it is rare for the parametersfor the heuristi searh to be hanged more than one in a session. In oneirumstane, the user might want HR to enourage onepts of a partiularnature, yet in another situation, they may not be interested in those oneptsat all. This approah means that the user annot speify that individualonepts are more interesting than others, whih was the ase with AM. Weprefer this approah as the user provides HR with general guidelines aboutwhih onepts are interesting, rather than intervening to fore developmentof a partiular onept.



142 9. Assessing ConeptsIt is important to understand how estimations of worth will drive thesearh before disussing how interestingness is measured. Hene in x9.1, we�rst desribe the agenda mehanism that HR uses. In x9.2, we look at somereasons why a onept may be thought of as interesting or not and what HRgains in terms of the interestingness of its onepts by the approah we havetaken to theory formation. We then disuss the measures HR uses to assessonepts, (setions x9.3 to x9.5) and give further details of the heuristi searhin x9.6. In x9.7, we provide a worked example using three onepts whih HRassesses to be very interesting, moderately interesting and uninteresting. Weend the Chapter by looking in x9.8 at some alternatives to the heuristi searhmehanism we have implemented.9.1 The Agenda MehanismHR builds a theory by repeatedly performing a theory formation step inwhih a onept is hosen and used in a prodution rule with a partiularparameterisation. The hoies for the step are taken from the top of an agendawhih ontains tuples of one of the following forms:hCi h[C;D℄ihC;P i h[C;D℄; P ihC;P;Xi h[C;D℄; P;Xiwhere C and D are onept numbers, P is the name of a prodution rule andX is a parameterisation.A theory formation step may lead to a onjeture being made or to theintrodution of a new onept. Every time a new onept C is added to thetheory, the tuple hCi is added to the agenda. When this reahes the top ofthe agenda it is expanded: the set of all tuples of the form hC;P i is added tothe top of the agenda, where P is a unary prodution rule, and all tuples ofthe form h[C;D℄; P i are added, where P is a binary prodution rule and Dis a onept already in the theory whih an be input together with C to P .The original tuple hCi is then removed.When a tuple of the form hC;P i or h[C;D℄; P i reahes the top ofthe agenda, this is further expanded: all tuples of the form hC;P;Xi orh[C;D℄; P;Xi are alulated where X is a suitable parameterisation of Pfor onepts C (or onepts C and D). As disussed in hapter 6, eah pro-dution rule is able to determine the set of parameterisations it an use fora partiular onept or pair of onepts. The original tuple is removed againso that the top of the agenda always ontains a tuple stipulating whih on-ept(s), prodution rule and parameterisation is to be used in the next step.The most straightforward searhes that HR an perform are depth �rstand breadth �rst searhes. In a breadth �rst searh, eah new onept isput at the bottom of the agenda and HR works through the agenda withoutever re-arranging it. In a depth �rst searh, eah new onept is put at the



9.2 The Interestingness of Mathematial Conepts 143top of the agenda and again HR works through the agenda without everre-arranging it.HR an re-order the agenda from time to time by sorting both the oneptsand the prodution rules and using these as primary and seondary keysfor sorting the agenda items: the agenda is re-ordered so that those tuplesontaining the onept at the top of the sorted list are brought to the top ofthe agenda, followed by tuples ontaining the seond onept in the list andso on. The agenda items for a partiular onept are further sorted so thatthose involving the �rst prodution rule in the sorted list are found higheron the agenda than the rest and so on. Re-ordering an take plae after aertain number of onepts or onjetures have been introdued or after aertain number of theory formation steps have been performed. As a default,HR re-orders its agenda after every 10 new onepts have been introdued,but this an be altered by the user.In a random searh, HR re-orders the onepts and prodution rulesrandomly. In a heuristi searh, HR alulates a numerial value for eahonept using an evaluation funtion, and orders the onepts in numerialorder. The value is meant to estimate how interesting the onept is, and isalulated by taking a weighted sum of a set of heuristi measures. Eahmeasure alulates some value of the onept designed to assess its worthin some way, so the heuristi searh HR performs is to build new oneptsfrom the most interesting old ones. How we estimate the interestingness ofa onept is explained in the rest of this hapter. The user an vary thesearh by hanging the weights for eah measure in the evaluation funtion.Prodution rules are also assessed and sorted, as disussed in x9.6.2.9.2 The Interestingness of Mathematial ConeptsWe want to gain some understanding of why ertain onepts in mathemat-is have attrated attention and been developed, whereas others have beenpassed over. We an learn both from the onepts in the mathematial lit-erature whih are said to be interesting, and from the way in whih othermathematial theory formation programs have approahed the problem ofassessing their onepts. In an automated theory formation program, wherea plethora of onepts are produed, there may be many onepts whih haveno interesting properties. As these onepts still have to be ordered, one pos-sibility is to look at what makes them uninteresting, and enourage the leastuninteresting ones. Hene we look both at some reasons why a onept mightbe onsidered interesting, and some reasons why it might be onsidered dull.To onlude this setion, we disuss why the way in whih HR invents on-epts and makes onjetures { regardless of the heuristi searh { inreasesthe average interestingness of the onepts in the theory. Parts of this dis-ussion have appeared in [Colton & Bundy 99℄ and [Colton et al. 00d℄.



144 9. Assessing Conepts9.2.1 What Makes a Conept Interesting?A onept might be more interesting than others if it is novel in some way.As in the AM program, a onept ould be onsidered novel simply if ithas reently been introdued (the reeny heuristi). This would enourage adepth �rst searh where the newest onepts are investigated before the olderones. The novelty of a onept might also be high if it has a property whihit shares with no other onept. For example, a funtion may be thought ofas novel if it has a di�erent domain or range to all the other funtions in thetheory.A onept might also be onsidered interesting if it is surprising in someway. In the AM program, a onept was deemed to be more interesting ifit had a property that its parents did not share. It was surprising that thehild onept had the property and it gained in interestingness as a result.Conepts ould also be thought of as surprising if they appear in a onjeturein an area of the theory di�erent to the one where they were introdued.The onjetures produed by the GraÆti program [Fajtlowiz 88℄ are use-ful beause they provide bounds for invariants whih may speed up the al-ulation of those invariants. In general, a onept may be interesting if it isuseful in some way. There are many reasons why a onept might be onsid-ered useful, inluding:� Its introdution lari�es the proof of an interesting theorem. For example,the onept of the produt of the �rst n primes, p1p2 : : : pn is required for theproof that there are an in�nite number of primes.� It helps to tell whether two entities are isomorphi or not, whih is a prob-lem ommon to many areas of mathematis. For example, we an tell thattwo groups are not isomorphi if they have a di�erent number of self inversingelements.� It provides an easier way of thinking about a onept of interest. In someases, it may provide a quiker alulation of the onept. For example, theonept of subgroups is very interesting in group theory. The onept oftriples of elements a; b and  for whih a � b�1 =  is therefore of interestbeause it helps enable a quik hek of whether a subset of elements formsa group, as disussed in x7.1.� It might have partiular desirable qualities. For example, with the IL pro-gram [Sims 90℄ the whole point of forming the theory was to produe a on-ept whih performed a partiular task, namely to multiply two numberstogether in a way whih met ertain riteria. How lose a onept omes toahieving a task an be measured to estimate the worth of the onept.Perhaps the most important way of telling whether a onept is interestingis to assess the quality and quantity of onjetures about it. In general, if there



9.2 The Interestingness of Mathematial Conepts 145are many theorems involving a onept, then it is probably more interestingthan one for whih there are only a few theorems. If a onept is involved in anopen onjeture, it may also gain interestingness and will be investigated tohelp solve the onjeture. For example, prime numbers are very interestingbeause interesting fats an be proved about them, in partiular that allintegers greater than 1 an be written uniquely as a produt of prime numbers(the prime fatorisation theorem). However, primes are also involved in manyopen onjetures, suh as whether there are an in�nite number of prime pairs,whih makes them even more appealing.Furthermore, in di�erent irumstanes, a onept about whih we an saylittle or nothing might also be onsidered interesting beause it is mysteriousto a ertain extent. We see that the onjetures made about a onept, notjust those whih an be proved, provide a good indiation of how interestingthe onept is. Lenat reognised this and equipped his AM program witha heuristi whih judged a onept as more interesting if there were moreonjetures about it.To summarise, a onept may be onsidered interesting if it is novel orsurprising, or has a use of some kind. It may also be onsidered interesting ifthere are many true or open onjetures about the onept.9.2.2 What Makes a Conept Uninteresting?In a theory formation session, there may be many onepts whih do notseem surprising or novel, don't have any obvious use and whih appear in noonjetures, proved or unproved. However, simply ignoring these, or throwingthem away ould be a mistake, as they may turn out to be interesting lateron. Hene it is still neessary to sort these onepts and our approah hasbeen to identify some undesirable properties of onepts and make HR preferonepts whih are better with respet to these properties. We disuss somereasons why a onept might be onsidered uninteresting here, but we notethat a onept ould have all these properties, but still be interesting for oneof the reasons given in x9.2.1.Firstly, a onept is learly uninteresting if it is non-sensial or mean-ingless. That is, if a onept has entered the theory with a de�nition whihis a non-sensial arrangement of mathematial symbols, then it is of no usewhatsoever. Note that this is di�erent to the problem of being diÆult toomprehend, whih is another reason a onept might be uninteresting { ifits de�nition makes sense, but is diÆult to understand, then the oneptmay not attrat muh interest. While HR an ertainly produe diÆult on-epts, it annot produe non-sensial de�nitions as the prodution rules workin a well de�ned manner to generate well formed de�nitions.The plausibility of a onjeture an be assessed by the amount of empirialevidene whih supports it. However, it is diÆult even to deide what theplausibility of a onept means. One way of telling if a onept is plausibleis whether there are any examples for it. For example, the onept of square



146 9. Assessing Coneptsnumbers whih are prime is not satis�able, hene there will be no examplesfor this onept. In general, if a onept is so speialised that the number ofexamples it applies to is redued to a small �nite set, then the onept maybe uninteresting. In partiular, if it an be proved that the de�nition appliesto only one example, then the de�nition is equivalent to the de�nition of theexample. For instane, HR produes this onept in number theory:[I ℄ : 2� 2 = Iwhih is just a de�nition for the number 4, so is not partiularly interesting.To summarise, a onept may be deemed uninteresting if it is non-sensialor inomprehensible, or if it has no examples, or is too speialised.9.2.3 Interestingness Gained from Theory FormationRealling that HR forms a theory using prodution rules to build new on-epts from old ones and has the ability to make non-existene and equivaleneonjetures as it goes along, we an disuss the advantages of this approahin terms of the quality of the onepts produed.By making non-existene onjetures, HR gains in two ways. Firstly, noonept is allowed into the theory if it has no examples, so only \plausible"onepts { where there are examples satisfying the de�nition of the onept {are present in HR's theories. Seondly, if there are examples for a onept, thede�nition annot be non-sensial. If a theory formation program onstrutedde�nitions in some syntati way without using the examples, it may beneessary to hek that the de�nition is well formed. A quik hek for thiswould be to see if the onept had examples. In this ase, however, it may notbe possible to distinguish between well de�ned onepts whih happen to haveno examples and non-sensial onepts. In HR, the de�nition is generated inan entirely separate proess to the examples of a new onept. Thereforeit is theoretially possible for the de�nition of a onept not to math theexamples of that onept, e.g. for an example of the onept not to satisfythe de�nition. We have disussed this problem in x6.9.3 and we have givenreasons why we are on�dent that this problem does not our in HR.Making equivalene onjetures also gives HR an advantage in two ways.Firstly, as it does not allow any repeated onepts into the theory, this im-proves the novelty of the onepts, as every onept has di�erent examples.Seondly, by reognising that two de�nitions are equivalent, HR an keepthe most omprehensible of the two, as disussed in x9.3.1 below. This willimprove the overall omprehensibility of the theory. Using a breadth �rstsearh also improves the omprehensibility of the theory produed, as on-epts with less ompliated de�nitions are produed before those with moreompliated de�nitions. However, this is often detrimental beause some of



9.3 Intrinsi and Relational Measures of Conepts 147the more interesting onepts in a theory may be fairly ompliated and outof the reah of a breadth �rst searh in an aeptable time limit.Finally, beause HR uses prodution rules whih were implemented so thatit ould reah lassially interesting onepts, many of the onepts produedhave general properties whih are known to be interesting in mathematis. Forexample, the math prodution rule introdues symmetry and onepts withsymmetry are often interesting. A di�erent approah to onept formationmay not be able to guarantee symmetry as a property in some of its onepts.In this ase, it may be neessary to try and determine whih onepts havesymmetry and enourage the program to build upon these.9.3 Intrinsi and Relational Measures of ConeptsWe distinguish here between intrinsi measures, for whih the value for a on-ept is alulated from looking at the onept alone, and relational measureswhih alulate the value for a onept by omparing it to others in the the-ory. We disuss the omprehensibility, parsimony and appliability measureswhih are intrinsi, and the novelty measure whih is relational.These measures rely on the fat that every onept HR produes an bethought of as a way of desribing the entities in the theory. For example, theonept of prime numbers desribes the number 1 as \no" beause it is not aprime, the number 2 as \yes" beause it is a prime, and so on. The � funtion(number of divisors), an also be used to desribe natural numbers:1 is desribed as having 1 divisor,2 is desribed as having 2 divisors,3 is desribed as having 2 divisors,4 is desribed as having 3 divisors,et.Given a partiular onept, C, we an use the desriptions it produes toategorise the entities in the theory by ategorising any entities as the sameif the onept desribes them to be the same. For example, the � funtionategorises the integers 1 to 10 in the following manner:[1℄; [2; 3; 5; 7℄; [4; 9℄; [6; 8; 10℄(the �rst ategory ontains all integers with 1 divisor, the seond ategoryontains all integers with 2 divisors and so on). In pratie, for eah entity E,HR takes the data table of C and extrats all the rows hE; a; b; : : :i. It thentakes the set of tuples ha; b; : : :i as the desription of E and the ategorisationis generated by looking at the desriptions for all the entities.



148 9. Assessing ConeptsFor an example to help desribe all the following measures, we use theonept of integers with a prime number of divisors whih HR produes. Thisonept has this de�nition:7: [I ℄ : 9 N s.t. N = jfd1 : d1jIgj & 2 = jfd2 : d2jNgj;and this data table (for the integers 1 to 10):7integer234579and it has the onstrution history as in Figure 9.1.
2. [I,d1] : d1|I

4. [I,N] : N = |{d1 : d1|I}|

size<1>

5. [I] : 2 = |{d1 : d1|I}|

split<2=2>

6. [I,N] : N = |{d1 : d1|I}| & 2 = |{d2 : d2|N}|

compose<1>

compose<1>

7. [I] : (exists N (N = |{d1 : d1|I}| & 2 = |{d2 : d2|N}|))

exists<1>Figure 9.1 Constrution path for the onept of integers with a prime number ofdivisors



9.3 Intrinsi and Relational Measures of Conepts 1499.3.1 ComprehensibilityAs noted above, while simple onepts are not neessarily more interestingthan ompliated ones, omprehensibility is ertainly a desirable property ofa onept. The de�nitions of onepts that HR produes are built from oneanother and in general, the more old onepts upon whih a new oneptis built, the more ompliated its de�nition will be. Hene, to estimate theomprehensibility of a onept, HR looks at the onstrution path and usesthis de�nition:� The omprehensibility of a onept is the reiproal of the number ofonepts in its onstrution path.Note that, for a given onept C, we all the number of onepts in itsonstrution path the omplexity of C. For example, from the onstru-tion history of onept 7 in Figure 9.1, we see that to fully understand thisonept, it is neessary to understand 5 onepts, and so it sores 1=5 foromprehensibility and has omplexity 5.It would be possible to make this measure more sophistiated by alulat-ing the value for omprehensibility based on the prodution rules whih wereused. For example, it usually turns out that a de�nition produed from themath prodution rule is easier to understand than the de�nition whih wasgiven as input. Therefore, onepts output from the math prodution ruleshould at least sore the same for omprehensibility as the onepts whihwere input to produe them. Adding this sophistiation was not a priority asthe measure performs adequately as it is. However, we have enabled HR tokeep the most omprehensible de�nition for a onept if it has been provedthat two de�nitions for it are equivalent. This often happens beause HR'sheuristi searh is not guaranteed to �nd the most omprehensible de�nitionfor a onept �rst.9.3.2 ParsimonyA measure whih is similar in nature to omprehensibility is the parsimonyof a onept, whih is de�ned thus:� The parsimony of a onept is the reiproal of the size of its data table,where the size of a data table is alulated as the number of rows multipliedby the number of olumns.As an example alulation, the data table for onept 7 has 1 olumn and 6rows, hene the onept sores 11�6 = 0:167 for parsimony.More parsimonious onepts give more suint desriptions of the en-tities. For example, to desribe the number 10 with the onept of prime



150 9. Assessing Coneptsnumbers, the desription is just: \no", whereas to desribe it with the on-ept of divisors requires the list [1; 2; 5; 10℄ whih is learly a less suintdesription. Hene, while the omprehensibility measure estimates how su-int the de�nition of a onept is, the parsimony measure estimates howsuint the desriptions will be if that onept is used to desribe the enti-ties in the theory.9.3.3 AppliabilityIf a onept is over speialised, then the set of entities it desribes will besmall. A simple example is the onept of groups of order 3. There is onlyone suh group, hene this onept is less interesting than, say, the oneptof Abelian groups, for whih there are in�nitely many. HR uses the followingde�nition to estimate how appliable a onept is:� The appliability of a onept is the proportion of entities whih appearin the left hand olumn in the data table for the onept. The proportion ofentities is alulated as the number of distint entities appearing in the datatable divided by the number of entities in the theory.As an example alulation, of the numbers between 1 and 10, 6 of themappear in the data table for onept 7 above. Therefore this onept sores610 = 0:6 for appliability. Conepts for whih there are no examples do notenter the theory until an example satisfying the onept's de�nition is found.Hene there are no onepts whih sore zero for appliability.9.3.4 NoveltyBeause HR makes equivalene onjetures, no two onepts in HR's theorieshave the same examples, so they are all novel in this respet. Therefore, wemust use another property of the onepts to determine how novel eah one is.Firstly, we ould see no reason why a new onept should be given preedeneover older onepts purely beause it has reently been introdued, espeiallyas this funtionality is largely mirrored by a depth �rst searh. Therefore, wedid not de�ne novelty using a reeny measure as Lenat did in AM.It has been our experiene while developing HR that we have been moreinterested in onepts whih ategorise the entities in unusual ways. For ex-ample, it is easy to ome up with a non-trivial reason why the numbers 2 and24 are the same: they are both even. However, it is more diÆult to �nd anon-trivial reason why the numbers 3 and 28 are the same. At any stage in atheory, there may be pairs, triples, et. of integers whih are never ategorisedas the same1 or likewise never ategorised as di�erent. Whenever a onept1 Exept in the trivial ategorisation, where everything is ategorised the same onaount of being an integer, say.



9.4 Utilitarian Properties of Conepts 151introdues a novel ategorisation of the entities in the theory, it will reduethe number of suh pairs, triples, et. This means it will inrease the propor-tion of questions of the form \why are entities A;B; : : : the same/di�erent?"whih an be answered with non-trivial replies.So, as a onept may share a ategorisation with many other onepts, itis worthwhile to determine how novel the onept is in terms of the noveltyof its assoiated ategorisation. We use the following de�nition:� The novelty of a onept C is the reiproal of the number of onepts(inluding C) in the theory whih share its assoiated ategorisation.As an example alulation, we note that onept 7 above appeared in atheory alongside 99 other onepts. Only 5 of the 100 onepts in the theory(inlusive) produed the same ategorisation as onept 7, namely:[1; 6; 8; 10℄; [2; 3; 4; 5; 7; 9℄Therefore, onept 7 sores 15 = 0:2 for novelty.The alulation of novelty values is fairly omputationally expensive as itmust ompare the ategorisations of all the onepts. To speed up the al-ulation, we notie that the novelty of a onept an only derease, and willonly do so when a onept is introdued with the same assoiated ategorisa-tion. Hene HR reords whih ategorisations have been introdued sine theonepts were last sorted and only the onepts with those ategorisationshave their novelty values adjusted.A onept an be novel to start with, but as it is developed, the ategori-sation it produes may be seen more often and its novelty will derease as aresult. This means that the novelty measure often helps to stop the theorybeoming too speialised around ertain onepts, as those whih are initiallyinteresting often lose their appeal later. Also, one ould argue that oneptswhih stay novel after muh development are truly interesting, as it appearsthat very few other onepts an ahieve the ategorisations they do.9.4 Utilitarian Properties of ConeptsAs disussed in x9.2.1, onepts an be used to perform ertain tasks, andhow well a onept performs with respet to a task an be used as an esti-mate of its interestingness. The �rst task we look at is populating the theorywith onepts, and we measure the produtivity of a onept in terms of theonepts it produes. Following this, we look at tasks from mahine learning,in partiular the generation of a onept whih ahieves a given lassi�ationof the objets of interest in a domain.



152 9. Assessing Conepts9.4.1 ProdutivityThe �rst way in whih a onept might be onsidered useful is if it helps thedevelopment of the theory. In partiular, the user may require a theory withmany onepts { it is often informative to use HR just to �nd the onepts ina domain and to ignore the onjetures. Every time a prodution rule step isarried out, it will result in either a onept or a onjeture (equivalene ornon-existene). We use the produtivity of a onept to give some indiationof whether the onept will produe a new onept or a onjeture in the nexttheory formation step, based on its past history. We use this alulation:� The produtivity of a onept is the proportion of theory formation stepsit has been used in whih have resulted in a new onept.Therefore, if a partiular old onept has produed many new oneptsin relatively few theory formation steps, it will sore well for produtivity(the probability of it produing a new onept in a theory formation step isassumed to be high beause of its previous performane). Use of this measureis intended to inrease the yield of onepts rather than onjetures beingformed, whih may be desirable { as tested in x11.2.4. As the onept isused in more theory formation steps, it may result in onjetures being maderather than onepts and the produtivity of the onept may drop.The produtivity of a onept an only be determined after it has beenused in at least one theory formation step. Hene HR assigns a default valueof 1 for produtivity to every new onept. If the produtivity measure isheavily weighted in the overall weighted sum, this default will enourage theuse of new onepts in theory formation steps, so that their produtivity anbe quikly assessed. The user an adjust this default value if they �nd itenourages a depth �rst searh too muh.9.4.2 Classi�ation TasksAs shown by the projet to lassify �nite simple groups, [Gorenstein 82℄ andKroneker's theorem lassifying Abelian groups whih we disussed in x3.2.1,lassi�ation is a ommon pursuit in mathematis. Two group multipliationtables are said to be isomorphi if there is a permutation of the letters rep-resenting the elements of the �rst whih makes it idential to the seond, asdisussed in x3.1.4. Mathematiians onsider isomorphi objets to be essen-tially the same as they only di�er in the initial hoie of element names.As disussed in x9.2.1, a onept may be useful if it helps to deide ingeneral whether two objets are isomorphi or not. For example, if two groupshave a di�erent number of self inversing elements (i.e. elements a for whiha = a�1), then they must be non-isomorphi, so the onept of self inversingelements is interesting.



9.4 Utilitarian Properties of Conepts 153One of the tasks HR an be set is to �nd a onept whih lassi�es upto isomorphism a set of groups (or any algebrai system). To do this, itis given a set of groups, G1; G2; : : : ; Gn, some of whih are isomorphi toeah other. Then HR is asked to �nd a onept whih an tell if any pairof the groups are isomorphi. To do this, the ategorisation produed by theonept must ategorise all pairs of isomorphi groups together, but all pairsof non-isomorphi groups di�erently. This provides a way of measuring eahonept: determine how lose its assoiated ategorisation is to the isomorphilassi�ation.Before looking at how this alulation is performed, we �rst note thatthe problem of �nding an isomorphi lassi�ation is an instane of the moregeneral problem of �nding a partiular ategorisation. For example, the userould be interested in lassifying groups as yli and non-yli, or Abelianand non-Abelian. Therefore, we allow the user to set a \gold standard" at-egorisation of the entities in the theory, and HR is asked to �nd a oneptwhih ahieves the gold standard as its assoiated ategorisation. This isa mahine learning task, but we are more interested here in how the taskdrives theory formation than the possible appliation of theory formation tomahine learning, whih we disuss in [Colton et al. 00b℄.We de�ne two measures whih enable HR to determine how lose a on-ept omes to the gold standard ategorisation. Let the set of entities HR isworking with be denoted by E = fe1; : : : ; ekg. Given a gold standard ate-gorisation, we denote: ex �g eyto say that ex and ey are in the same ategory in the gold standard. Given aonept C, we similarly denote: ex � eyif ex and ey are in the same ategory in the assoiated ategorisation for C.Using this notation, we de�ne the following measure:� The invariane of a onept is alulated as:jf(ei; ej) 2 E �E : i < j & ei �g ej & ei � ejgjjf(ei; ej) 2 E �E : i < j & ei �g ejgjThis measures the proportion of pairs of entities whih should be ategorisedas the same (with respet to the gold standard) that are ategorised as thesame by the onept. The name invariane is derived from the word `invari-ant' in mathematis, whih is a alulation giving the same output for anyisomorphi objets. Hene, given the isomorphi lassi�ation as the goldstandard, only onepts whih sore 1 for invariane are invariants for theentities in the theory.



154 9. Assessing ConeptsInvariants are useful for telling if two examples are non-isomorphi: if theyhave di�erent values for the invariant then they must be non-isomorphi.However, two examples ould have the same invariant value, but still be non-isomorphi. We use the following measure to enourage onepts whih helpto get around this problem:� The disrimination of a onept is alulated as:jf(ei; ej) 2 E �E : i < j & ei 6�g ej & ei 6� ejgjjf(ei; ej) 2 E �E : i < j & ei 6�g ejgjThis measures the proportion of pairs of entities whih should be ategorisedas di�erent (with respet to the gold standard) whih are ategorised asdi�erent by the onept. A onept whih sores 1 for disrimination willreturn two di�erent values for a pair of non-isomorphi entities.Hene a onept whih sores 1 for both invariane and disriminationmust have the gold standard for its assoiated ategorisation, and it will bepossible to use the alulation that it performs to tell with ertainty whetherany two entities (from the set HR has) are isomorphi or not. The advantageof having two di�erent measures is that the user an emphasise the impor-tane of invariants if he or she is more interested in onepts whih do nothange up to isomorphism.As an example, we note that amongst others, HR �nds the followingfuntion whih lassi�es the groups up to order 6 up to isomorphism:[G;N ℄ : N = jf(a; b; ) 2 G3 : a � b =  & a �  = bgj:The lassi�ation task is disussed further in x12.1.9.5 Conjetures about ConeptsA onept may appear to be uninteresting until it appears in an importantonjeture, whih may make it more interesting. HR models the way in whihinterest for a onept inreases as it appears in more theorems, open onje-tures and even disproved results.HR has four additional measures to assess the interestingness of a oneptin terms of the results it appears in. These are:(i) The number of theorems, onjetures and non-theorems it appears in.(ii) A sore for the quality of the theorems it appears in.(iii) A sore for the quality of the open onjetures it appears in.(iv) A sore for the quality of the non-theorems it appears in.How these measures are alulated is disussed in Chapter 10, as it involvesassessing the onjetures themselves, a di�erent problem to the one we areaddressing here.



9.6 Details of the Heuristi Searhes 1559.6 Details of the Heuristi Searhes9.6.1 When and How to Measure ConeptsThe hoie of when to order the onepts is set by the user: after a ertainnumber of onepts or steps have ourred. The hoie is dependent on themeasures being used. For instane, the produtivity measure is partiularlye�etive when HR is asked to sort the onepts after every 10 steps or so,rather than after a �xed number of onepts has been introdued. This isbeause, if an old onept is being used in theory formation steps whihresult in onjetures rather than new onepts, HR will ontinue to developthe onept until a ertain number of new onepts have been introdued andthe old onepts are sorted. This may only happen after many onjetureshave been introdued whih is presumably undesirable if the produtivitymeasure is being used. Sorting after a �xed number of steps will result inonepts whih are produing many onjetures being identi�ed and put tothe bottom of the list.Conepts must be measured before they are sorted, but there is someexibility over when to measure new onepts. The appliability, omprehen-sibility, invariane, disrimination and parsimony measures are alulated assoon as a onept is formed. If the omprehensibility of a onept is inreasedby an equivalent de�nition being substituted, the new measure is reordedappropriately. Also, if a new entity is introdued to the theory as a ounterex-ample to a onjeture, the appliability and parsimony measures are adjustedfor eah onept using the new data tables alulated.The measures for onjetures involving the onept are updated when-ever the onept appears in a new onjeture. Similarly, the produtivity ofa onept is updated every time it is used in a theory formation step. Asmentioned above, the novelty of a onept dereases every time a new on-ept is introdued whih ahieves the same ategorisation. The measurementof the novelty of a new onept and the adjustment of the novelties of oldonepts is undertaken just before the sorting of the onepts ours. In thisway, if two new onepts with a previously ahieved ategorisation have beenformed sine the last sorting, there needs to be only one adjustment of thenovelties of the onepts whih have the assoiated ategorisation of the newonepts. This produes a small gain in eÆieny.Eah of the measures disussed above returns a value between 0 and1. However, before the sorting ours, the measures for eah onept arenormalised by distributing them evenly over the interval [0; 1℄. For example,in Table 9.1 we give the omprehensibility sores for six onepts and theirsore after normalisation.The normalised sores are distributed between 0 and 1 in inrements of0.25, beause there were �ve di�erent omprehensibility sores. We see thatthe sore for onept 2 has been raised from 0.5 to 0.75 after normalisation.This is neessary for the weights of the measures to work in the way the



156 9. Assessing ConeptsConept 1 2 3 4 5 6Comprehensibility 1 0.5 0.01 0.25 0.125 0.25Normalised Sore 1 0.75 0.0 0.5 0.25 0.5Table 9.1 Pre and post-normalisation sores for omprehensibilityuser expets. For example, if the user heavily weights the omprehensibilitymeasure, they expet onepts soring relatively well for this measure to beenouraged. Conepts soring only 0.5 for this measure are atually some ofthe most omprehensible onepts, but their overall sore will not reet thisunless normalisation ours. The normalisation proess an be disabled toalter the searhes HR performs, but it is present by default.9.6.2 Sorting the Prodution RulesThe onepts HR produes an be ompared and ontrasted with oneptsin the mathematial literature and measures derived whih enourage theonstrution of more interesting onepts. There are also many onepts in atheory, and ordering them is neessary to make any progress with a heuristisearh. However, prodution rules are arbitrary piees of ode implementedby us to enable HR to reah onepts, and as we have seen, one oneptmay be found by many di�erent paths. Hene it is diÆult to derive suitablemeasures for prodution rules and it seems more sensible to spend a longertime evaluating onepts than prodution rules.We have only two ways to measure prodution rules. Firstly, their pro-dutivity an be measured as the proportion of times their appliation hasresulted in a new onept rather than a onjeture being added to the the-ory. This is diretly analogous to the produtivity measure of a onept. Theother way in whih HR assesses prodution rules is in terms of the oneptsthey produe. Noting that eah onept is produed by a single produtionrule, we deided that the quality of the onepts output by a prodution ruleould be used to measure the worth of the prodution rule.The overall worth of a prodution rule is taken to be a weighted sumof its produtivity and the average normalised sore of the onepts it hasprodued. As with the onepts, the user an set the weights for the sum.The prodution rules are sorted at the same time as the onepts.9.6.3 Restriting the SearhSo far, we have disussed how to enourage the searh to go in ertain di-retions and not how to blok partiular paths. A searh ould be restritedby disarding onepts whih are so uninteresting that it is unlikely they willappear in further theory formation steps. In our ase, as a task is never putbak on the agenda, if HR threw away onepts, it would not be possibleto retrieve the same onept, unless a syntatially di�erent, but logially



9.6 Details of the Heuristi Searhes 157equivalent one was found. While it would be possible for it to do so, HRnever throws away onepts beause, while onepts at the bottom of the listof interestingness have little hane of being developed, they may still appearin onjetures and may eventually turn out to be of some interest.Instead, the user an restrit the searh by stipulating some types ofonept that should not be produed. HR has three thresholds and it assesseswhether the onept whih is going to be produed by a partiular step onthe agenda will break any of the thresholds. Any steps where this is the aseare not arried out. The thresholds are:� The arity threshold. The ompose prodution rules adds olumns to adata table. If a step will produe a onept where the number of olumnsof its data table exeeds this threshold, the step will not be arried out. Weusually set this to 4 or 5.� The size threshold. In ertain situations, the size of the data table maygrow too large, so HR disards any step where the onept produed willhave a data table with size exeeding this threshold. The size is alulatedas the number of rows multiplied by the number of olumns. This thresholdis usually set to between 600 and 1000.� The omplexity threshold. Measuring the omplexity of a onept asthe number of onepts in its onstrution path, if a onept beomes tooomplex, its omprehensibility will derease. Therefore, HR will only allowsteps produing onepts with a omplexity below this threshold, whih isusually set to between 5 and 20, dependent on the irumstanes.Of these, the omplexity threshold is the most ommonly used. In e�et,the omplexity threshold imposes a depth limit on the searh. Note that ifa onept is passed through a single-onept prodution rule, the oneptprodued will sore one more for omplexity. However, if two onepts arepassed through a binary prodution rule, the resulting omplexity will dependon how many anestor onepts the originals shared. Hene HR will not allowany onept with omplexity at the threshold to be used in any produtionrule, and whenever a binary prodution rule is to be used, HR looks at theshared anestors to determine whether a step an take plae. This guaranteesthat no onept produed has omplexity greater than the threshold.Given a omplexity threshold, the ability to hoose the most omprehensi-ble from a set of equivalent de�nitions for a onept helps HR to �nd as manyonepts as possible. This happens beause a more omprehensible de�nitionwill have less omplexity, and hene will not be at the threshold, whereas itsmore omplex equivalent may be at the threshold and hene unusable. This isof partiular importane when HR is asked to exhaust a searh for onepts,whih is possible if the omplexity threshold is set very low (for example at3 or 4), and/or only a subset of prodution rules are used.



158 9. Assessing Conepts9.6.4 Choosing WeightsThe overall worth of a onept is alulated using the evaluation funtion: aweighted sum of all the above measures. This worth is only alulated so thatthe onepts an be ordered and the setting of the weights an be arbitrary aslong as the overall worth enables the onepts to be sorted in a way agreeableto the user. Often it is easiest to make the weights frational and add up to1, as this makes it lear whih measures have been emphasised. However, itis aeptable to weight some measures positively and others negatively.For example, to enourage highly speialised onepts, the user ould dis-riminate against omprehensible and appliable onepts. In this ase, withthe measures available to HR, the only way to enourage highly speialisedonepts is to give the weights for the omprehensibility and appliabilitymeasures negative values. Also, ertain measures may ause a onit witheah other and onepts soring high for one may sore low for another. Thismainly happens when the novelty measure, whih enourages onepts pro-duing a variety of ategorisations, is used with the invariane and disrim-ination measures, whih enourage a narrow band of onepts that produepartiular ategorisations. It also ours when parsimony is used with eitheromprehensibility or appliability.As disussed in x12.1 later, when looking for onepts whih ahieve a goldstandard ategorisation, we have found that if the invariane and disrimi-nation measures are emphasised from the start, the initial onepts whihsore well for these measures tend to dominate the theory. It is often the asethat these onepts are not partiularly good at the task, but beause theyame �rst they are developed the most. Therefore, we usually start the ses-sion with either a breadth �rst searh, random searh or a searh where thenovelty of onepts is highly weighted. It is hoped that HR will produe manydi�erent ategorisations of the entities, some whih ome lose to the goldstandard and others whih are far from it. Then, when HR is eventually askedto emphasise onepts soring well for invariane and disrimination, it anhoose the best out of a whole range of possibilities. Often we ask HR to �nd100 di�erent ategorisations before turning on the invariane and disrimina-tion measures (and turning o� the oniting novelty measure). Alternatingbetween searh strategies like this ould be done in phases to diversify thesearh, but we tend to hange the weights only one in a session.Finally, there are some settings in addition to the weights that the useran alter to tailor the searh to their needs. Firstly, if two onepts are givenexatly the same overall sore (whih often happens if only one measure isused), then there is a hoie of whih to rate higher than the other. The useran speify whether the rating should be done in a depth �rst manner, wherethe later onepts are rated higher, or in a breadth �rst manner, where theearlier onepts are rated higher. The default is breadth �rst, beause thisenourages more omprehensible onepts.



9.7 Worked Example 159It is also possible to work with only a restrited set of prodution rules,whih will radially hange the way in whih a theory progresses as ertainonepts will no longer be attainable. Often, this an lead to foused, butnevertheless interesting theories, for example see x11.5.3 later. If the numberof prodution rules is restrited and a low omplexity threshold is set, itis often possible to enable HR to exhaust its searh. In suh sessions, it isinteresting to see whih lassially interesting onepts are within just a fewsteps of the initial onepts and attainable using only a few prodution rules.9.7 Worked ExampleWhen not asking HR to perform partiular tasks suh as lassi�ation, wehave preferred to emphasise the novelty measure. To a ertain extent, thenumber of ategorisations of the set of entities gives some indiation of howmuh the theory has been explored,2 and enouraging a novelty measureshould inrease the yield of di�erent ategorisations. The example we givehere is from a session in graph theory, where the emphasis was on exploration,so the novelty measure was set highest. We also wanted the theory to beomprehensible, so we emphasised the omprehensibility measure, and weemphasised the produtivity measure to inrease the yield of onepts. Theweights for eah measure were set as in Table 9.2. The other settings whiha�eted the searh are given in Table 9.3.Measure WeightAppliability 0.0Comprehensibility 0.2Invariane 0.0Disrimination 0.0Non-theorem sore 0.0Novelty 0.6Number of theorems sore 0.0Open-onjeture sore 0.0Parsimony 0.0Produtivity 0.2Theorem sore 0.0Table 9.2 Weights hosen for worked exampleIn this session, HR worked with the 10 onneted graphs with four or fewernodes and ompleted 1000 theory formation steps. All the onjeture makingabilities were turned o�, as we just wanted a set of onepts to examine. HRprodued 445 onepts, whih gave rise to 138 distint ategorisations of the2 We all this pro-ative mahine learning in [Colton 00a℄, but disussion of thisis beyond the sope of this book.



160 9. Assessing ConeptsSetting ChoieArity threshold 4Complexity threshold 8First sort after 10 oneptsProdution rules fexists,math,forall,onjunt,size,split,negate,ommongProdutivity default 1Sort after every 10 oneptsSize threshold 600Table 9.3 Other settings for worked example10 graphs. The following three onepts were rated as the most interesting,the 200th most interesting and the least interesting respetively:(i) [G℄ : 9 n1 s.t. (8 e1; (n1 is on e1))(ii) [G℄ : � n1 s.t. (2 = jfe1 : n1 is on e1gj)(iii) [G;n1; n2; n3℄ : 2 = jfe1 : n1 is on e1gj^ 2 = jfe2 : n2 is on e2gj^ 2 = jfe3 : n3 is on e3gjWe note that onept (i) is the lassially interesting onept of star graphs,while onept (ii) disusses graphs whih have no node of degree 2 and onept(iii) is simply triples of nodes all of whih are on two edges.To alulate the overall sores for these onepts, we need the followinginformation:� The assoiated ategorisation of onept (i) was shared by no other on-epts, but the ategorisation of onept (ii) was shared by four others, andthe ategorisation of onept (iii) was shared by 14 others. Hene they sored1/1, 1/5 and 1/15 for novelty respetively.� After the 1000th step, onept (i) had appeared in 5 theory formation steps,4 of whih had produed a new onept, onept (ii) had produed a oneptin 11 out of 17 steps and onept (iii) had been suessful in only 5 out of 33steps. Hene they sored 4/5, 11/17 and 5/33 for produtivity respetively.� Conept (i) had 4 onepts in its onstrution path and onepts (ii) and(iii) had 5. Hene they sored 1/4, 1/5 and 1/5 for omprehensibility.Table 9.4 summarises these values and also gives the normalised measures.The values are given to three deimal plaes. The overall sores for eahonept were alulated using the sores in Table 9.4 in the weighted sumpresribed by the weights in Table 9.2. The overall sores were therefore:



9.8 Other Possibilities 161
Conept Comprehensibil

ity
Normalised Comprehensibil
ity

Novelty Normalised Novelty(i) 1/4 = 0.250 0.571 1/1 = 1.00 1.00(ii) 1/5 = 0.200 0.429 1/5 = 0.250 0.667(iii) 1/5 = 0.200 0.429 1/15 = 0.067 0.00
Conept Produtivity Normalised Produtivity OverallSore(i) 4/5 = 0.800 0.875 0.889(ii) 11/17 = 0.647 0.717 0.629(iii) 5/33 = 0.152 0.089 0.104Table 9.4 Sores and normalised sores for eah onept(i) (0:2� 0:571) + (0:6� 1) + (0:2� 0:875) = 0:889 (3d:p)(ii) (0:2� 0:429) + (0:6� 0:667) + (0:2� 0:717) = 0:629 (3d:p)(iii) (0:2� 0:429) + (0:6� 0) + (0:2� 0:089) = 0:104 (3d:p)From these sores we an see why HR rated onept (i) higher than the others,and that with just these three measures, the total sores are distributed overmost of the interval [0,1℄. This shows that HR is e�etive at distinguishingbetween interesting and dull onepts (subjet to the user's hoie of weightsin the overall evaluation funtion).9.8 Other PossibilitiesThere are many other ways by whih onepts ould be assessed automat-ially, and we have not had time to investigate all the possibilities. In par-tiular, we have not foused on the surprisingness of onepts. In the nexthapter, we disuss how a onjeture an be thought of as surprising, and ifa onept appears in many surprising onjetures, it is thought to be inter-esting. Another way to measure the surprisingness of a onept would be toanalyse its onstrution path and see how muh it di�ers from the others inthe theory. A omparison ould be made in terms of whih onepts appear inthe onstrution path, and/or whih prodution rules are used. For example,



162 9. Assessing Coneptsit may be interesting that a onept has two old onepts in its onstrutionpath whih appear in the path for no other onept, and we may say that thisis surprising (or novel, perhaps). We ould also follow Lenat's approah forsurprisingness by stating that a onept is more surprising if it has a propertynot shared by its parents (or perhaps by any anestor).Another way in whih HR an measure onepts is the number of user-given onepts whih appear in eah onept's onstrution path. For exam-ple, when working in group theory, onepts whih involve the group opera-tion as well as the onepts of identity and inverse are often more interestingthan those based on the group operation alone. Similarly, if the user gaveHR many high-level onepts to start with, he or she may want to enourageonepts whih ombine as many of these as possible. We do not use thismeasure in the weighted sum as we have found that it does not disriminatewell between onepts. However, it may be useful for enouraging a broadsearh (see x11.2.4).We might also onsider assessing a onept in terms of the worth of itshildren, whih would be a more sophistiated version of the produtivitymeasure. For example if a onept was a parent of many interesting on-epts, then the original onept ould gain in interestingness. This raises thequestion of how far up a onept's onstrution path to go when assigningworth. For example, should the grandparents of an interesting onept gainextra value? We have not had time to address suh questions, but note thatit would be an interesting extension to HR's funtionality to enable it tospread interestingness around in this manner. However, we would need to beareful not to allow HR to get into a loop where a hild is deemed interestingbeause of an interesting parent and vie versa.We have not investigated the sorting of parameters for a hosen pair ofonept and prodution rule. Eah prodution rule has a default order forthe parameters it uses. For example, the exists prodution rule hooses pa-rameters whih remove as many olumns as possible before parameters whihremove fewer olumns. This is simply the default for the prodution rule, andthere is no possibility to alter this if it turns out to be an inappropriate tati.As with the prodution rules themselves, it would be possible to determinethe parameterisations for eah prodution rule whih have been either themost produtive, or have produed the most interesting onepts, and sortthe parameterisations aordingly.Also, we have not had time to investigate alternative ways of using theheuristi measures HR alulates. The weighted sum method for the evalu-ation funtion ould be replaed by a simpler method whih took the bestsore for a onept out of all the measures. This method would allow lessustomisation by the user, but is appealing beause a onept whih had anyinteresting property, whether it be parsimony, omprehensibility, et. wouldsore well. Thus the user need not speify any weights in the knowledge thata onept whih was very interesting for any reason would be developed.



9.9 Summary 1639.9 SummaryWhile the proesses HR employs in its heuristi searh seem ompliated,they are simply an implementation of the following prinipal: to produe aninteresting theory, it is a good idea to build on and investigate the mostinteresting onepts. Geneti algorithms [Mithell 96℄ use similar redit as-signment to rank genes and order reprodution. How well our approah worksis disussed in Chapter 11, and we have onentrated here on how to enablesuh a heuristi searh.We have desribed seven heuristi measures whih HR uses to assess theonepts it produes. The appliability and parsimony of a onept are al-ulations based on its data table, whereas the omprehensibility of a oneptis based on its onstrution history. The produtivity of a onept alulatesthe likelihood that a theory formation step using the onept will result inthe introdution of a new onept. The invariane and disrimination of aonept measure how lose the assoiated ategorisation of the onept is tothe gold standard lassi�ation supplied by the user, whereas the novelty ofa onept gives an indiation of how often the assoiated ategorisation hasbeen seen. A further four measures using onjetures involving a onept toassess the onept are disussed in the next hapter.All the measures are normalised and a weighted sum of them is taken togive an overall value of worth for eah onept. This enables the onepts tobe sorted, whih in turn enables the prodution rules to be sorted in terms ofthe interestingness of the onepts they produe. The sorted lists of oneptsand prodution rules are used to order an agenda of tasks, whih are arriedout in turn to build the theory.Users have a great deal of ontrol over how the searh for onepts isonduted. As well as setting the weights for the evaluation funtion, theyan also speify when to sort the onepts and whih prodution rules touse. Furthermore, they an speify thresholds whih restrit the searh byforbidding steps whih will produe ertain types of onepts. This allowsa high degree of ustomisation, and experimentation is possible to ahievegood settings for partiular tasks.Eah mathematial theory formation program assesses onepts in a dif-ferent way, and these are often derived spei�ally for the domains that theprograms work in. We have not explored the possibilities for measures whihare spei� to a domain, although we aknowledge that they may improvethe quality of theories produed in partiular domains. The measures we haveintrodued work as well in �nite algebrai systems as they do in number the-ory or graph theory. This partiular design deision was taken to make HRmore general. However, it has also given us the opportunity to investigate thegeneral problem of estimating whether a mathematial onept is interestingor not, and we hope to have shed some light on this important question.





10. Assessing Conjetures
1, 4, 9, 11, 14, 19, 41, 44, 49, 91, 94, 99, 111, 114, 119, 141, : : :A036435. Integers where all the digits are non-zero square numbers.We have onentrated so far on using fats about a onept whih an bealulated to assess the onept, for example the novelty of its ategorisation.We look now at using onjetures about a onept whih must be proved ordisproved, to assess it. To do this, we assess the onjetures themselves andredit onepts if they appear in interesting onjetures. Open onjetures,theorems and non-theorems an be assessed in di�erent ways. We di�erentiatebetween generi measures for onjetures whih an be used to assess anyonjeture, those measures whih are appliable only to theorems and thosemeasures whih are only appliable to non-theorems. The generi measuresare disussed in x10.1 and in x10.2 we disuss how additional informationfrom theorems an be used to assess them. In x10.3 we look at assessing non-theorems using information about the ounterexample whih disproved theonjeture.As with onepts, the user sets weights for an evaluation funtion usedto estimate the overall worth of eah onjeture, as disussed in x10.4. Hav-ing desribed how onjetures are assessed, in x10.5 we look at how to usethem to assess the onepts they disuss. This involves keeping measures ofonjetures as independent as possible from measures of onepts. We alsodesribe how HR determines whih onepts appear in a onjeture and howthe information about onjetures is used to assess onepts.10.1 Generi Measures for ConjeturesThe four measures desribed in this setion an be used to assess any on-jeture, regardless of whether the onjeture has been proved or not. Wedisuss how the type of onjeture an a�et its interestingness and how thesurprisingness, appliability and omprehensibility an also be measured andemployed to assess onjetures.



166 10. Assessing Conjetures10.1.1 Type of ConjetureA simple way to assign worth to a onjeture is to state that equivalene on-jetures are more interesting than non-existene onjetures (or vie versa).This measure returns 1 if the onjeture is an equivalene onjeture and 0 ifit is a non-existene onjeture, or vie versa dependent on the user's hoie.Note that if the user wants to turn o� this measure, they should assign aweight of zero for it in the evaluation funtion. When working with �nitealgebrai systems, we tend to disriminate against non-existene onjetures,as they are usually less interesting than equivalene onjetures.10.1.2 SurprisingnessThe mathematiian John Conway is muh quoted,1 for replying to the ques-tion: \what makes a onjeture interesting?" with: \it must be outrageous!"Good examples of outrageous onjetures are what Conway alls the \Mon-strous Moonshine Phenomena" [Conway & Norton 79℄, beause they onnettwo very di�erent areas of pure mathematis, namely modular funtions and�nite simple groups. These onjetures were originally formed when JohnMKay notied that the degree of the smallest nontrivial irreduible omplexrepresentation of the Monster group was one less than a oeÆient in thewell known j(q) ellipti modular funtion. Rihard Borherds was reentlyrewarded with the Fields Medal for his proof of the Moonshine onjetures.While we wouldn't presume to use the word \outrageous" for the on-jetures HR produes, we do enable it to estimate how surprising eah on-jeture might be. Of ourse, surprisingness is subjetive, dependent on thebakground knowledge and expetations of the person who is to be surprised.However, we have identi�ed ertain harateristis of onjetures whih mayinrease the hane that they will be surprising.Equivalene onjetures state that two de�nitions are semantially thesame and we an measure how syntatially di�erent the de�nitions are. Iftwo de�nitions whih look very di�erent are onjetured to be equivalent,this will perhaps be more surprising than a onjeture in whih two verysimilar looking de�nitions are onjetured to be equivalent. To estimate thesyntatial di�erenes between the two de�nitions, HR looks at their on-strution paths. In general, if two onepts have very di�erent onstrutionpaths, their de�nitions will look di�erent. To determine how di�erent theonstrution paths are, HR looks at the onepts in the paths, and uses thisde�nition:� The surprisingness of an equivalene onjeture is the number of oneptswhih appear in the onstrution path of one onept, but not both.1 For example, see [Fajtlowiz 99℄.



10.1 Generi Measures for Conjetures 167HR invokes the Dot program [Koutso�os & North 98℄ to generate a dia-gram representing an equivalene onjeture, whih we an use to illustratethis measure. For example, this onjeture:8 G;8 a; b 2 G;a � b 6= a () 9  2 G s.t. ( � a = b & a 6= inv()) (10.1)is represented pitorially in Figure 10.1, where we see that onept 9 has beenonstruted via two di�erent paths relating to the left hand and right handde�nitions in the onjeture. The dotted line indiates the prodution rulestep whih led to the onjeture. The �rst path { down the left hand side ofthe diagram { goes through onepts 2 and 8 and the seond path, down theright hand side, goes through onepts 2, 4, 10 and 11. Hene onepts 4, 8,9 and 10 appear in one, but not both, onstrution paths, and the onjeturesores 4 for surprisingness.
2. [G,a,b,c] : a*b=c

8. [G,a,b] : a*b=a

match<1232>

11. [G,a,b,c] : a*b=c & -(b=inv(a))

compose<1230>

9. [G,a,b] : -(a*b=a)

negate<0> new concept

exists<134>

4. [G,a,b] : b=inv(a)

10. [G,a,b] : -(b=inv(a))

negate<0>

compose<1230>

Figure 10.1 Pitorial representation of an equivalene onjetureThe user an hoose instead to measure the proportion, rather than thenumber of onepts whih appear in one but not both onstrution paths.However, with the proportional measure, equivalene onjetures with sim-ple de�nitions on both the left hand and right hand sides an sore highlyfor surprisingness. These onjetures are usually not partiularly surprisingdue to the simpliity of both de�nitions. Therefore, we tend not to use theproportional measure.



168 10. Assessing ConjeturesNon-existene onjetures state that there are no examples for a on-ept. HR has two methods available for estimating the surprisingness of non-existene onjetures, namely:(a) Measuring the omprehensibility of the onept whih is hypothesisedto have no examples and stating that the non-existene of a simply statedonept is more surprising than the non-existene of a ompliated onept.(b) The onept hypothesised to have no examples was onstruted fromparents whih did have examples. Thus we an state that it is more surprisingif the parent onept(s) had many examples than if the parent onept(s) hadfew examples. In e�et, this is the same as measuring the appliability (asde�ned in x9.3.3) of the parent onept.By default, HR uses (b).10.1.3 Other Generi MeasuresHR has two other generi2 measures for onjetures. For reasons given inx10.5.1 below, we usually only use these measures for pruning purposes aftera theory has been formed. Both measures are analogous to properties ofonepts disussed in Chapter 9:� The appliability of a onjeture is the proportion of entities that the on-jeture disusses. For example, if a onjeture was about Abelian groups, thiswould have less appliability than a onjeture disussing groups in general.Given the de�nition of appliability of onepts in x9.3.3, two onepts on-jetured to be equivalent must have the same appliability. The appliabilityof an equivalene onjeture an therefore be alulated as the appliabilityof the onepts whih are hypothesised to be equivalent. The appliabilityof an impliation onjeture { where a more general onept implies a lessgeneral onept { is taken to be the appliability of the more general onept.The appliability of a non-existene onjeture is zero as it states that thereare no entities satisfying a de�nition.� The omprehensibility of a onjeture is the reiproal of the numberof distint onepts whih appear in the onstrution path of the oneptsdisussed in the onjeture. As with the onepts themselves, it may be desir-able to enourage more omprehensible onjetures. In partiular, onjetureswhih are simply stated but diÆult to prove are often of most interest, agood example being Fermat's Last Theorem. However, under di�erent ir-umstanes, the user may be interested in the more ompliated onjetures,perhaps beause in general they pose more of a hallenge to prove.2 In the sense that they an measure any type of onjeture, whether proved ordisproved.



10.2 Additional Measures for Theorems 16910.2 Additional Measures for TheoremsTwo obvious but important aspets of theorems whih distinguish them fromopen onjetures are (i) they are true statements and (ii) they have proofs.By identifying other algebrai systems for whih the theorem is also true, asdisussed in x10.2.2, the generality of the result an be used to help assess itsinterestingness. Also, as disussed in x10.2.1, the diÆulty of the proof anbe used to help assess the interestingness of the theorem.As HR an only prove onjetures in algebrai domains, these additionalmeasures are only used in those domains. Also, these measures are only em-ployed when Otter is used exlusively to prove the theorems. This is beausewe have found it diÆult to ompare the proofs produed by HR with thoseprodued by Otter. It may be possible to use these measures when both HRand Otter prove theorems, but for larity we restrit the use of these measuresto theorems proved wholly by Otter.10.2.1 DiÆulty of ProofSometimes, easy to prove theorems are very useful and hene interesting. Forexample, the theorem that all groups are quasigroups is fairly easy to prove,yet helps greatly in onstruting multipliation tables for groups, as it showsthat eah element must appear in every row and olumn of the table. It isalso true that some diÆult to prove onjetures are uninteresting. However,we take the general approah that theorems whih are easier to prove are lessinteresting than those whih are more diÆult to prove. The great majorityof the onjetures HR makes are easy to prove for mathematiians, but wean model the diÆulty of a proof by looking at how hard Otter found it toprove the theorem.It has been our experiene that for the theories HR works in, and thelevel of sophistiation of the onjetures produed, 10 seonds is enough forOtter to prove the majority of the theorems that HR produes. Furthermore,it is often the ase that those theorems whih Otter annot prove in 10seonds take a great deal more than 10 seonds to prove, and the numberof theorems proved is not proportional to the time Otter is allowed, whihappears to be a well known feature of Otter [MCune 00℄. We have foundthat there isn't a great deal of variation in the time Otter spends provinga theorem, so this was not a good indiation of the diÆulty of the proof.When mathematial results are published, the author rarely states how longit took them to �nd the proof. This indiates that the time spent provinga theorem is less important than the proof itself. Hene, we deided not toestimate the diÆulty of a theorem by the time taken to prove it.We have preferred an approah where the proof itself is examined toestimate the diÆulty of the theorem. Otter aompanies every proof it �ndswith a \proof length" statisti whih is simply the number of steps in theproof. As disussed in x8.2.5, the resolution proofs Otter produes are not



170 10. Assessing Conjetureseasy to read, and it may transpire that a long proof from Otter may bemuh shorter when translated into a human readable format. However, it isgenerally the ase that if Otter has proved a theorem in 50 steps, the proofwill be more diÆult to understand than a proof with only �ve steps.Therefore, we hose to estimate the diÆulty of a proof by Otter's prooflength statisti, and HR simply reads this from Otter's output. For example,this theorem in group theory is proved with a proof of length just 2:8 G;8 a; b 2 G; a � a = b () 9  2 G s.t. (a �  = b & a � a = b)whereas this one requires a proof of length 8:8 G;8 a 2 G; a = id () a � a = aand this one requires a proof of length 24:8 G;8 a; b 2 G; b = inv(a) () 9  2 G s.t. ( � a = b & b � b = )In a personal ommuniation with William MCune, the author of Otter,he suggested that the shape of the lauses produed while �nding a proofould be used to estimate the interestingness of a proof. In partiular, MCunesuggested that those proofs where the lauses start short and elongate to amaximum before shortening again as the proof is reahed are more interestingthan other proofs. While we have not had time to implement a measurebased on this, we note that more sophistiated methods for estimating theinterestingness of a proof are possible, and that the proof is a good soure ofinformation about the theorem itself.10.2.2 Generality of TheoremsThere are many ways to axiomatise group theory, but the standard way isto use the assoiativity, identity and inverse axioms. From these we an seethat, amongst others, group theory is a speial ase of these theories:� Trivial algebra: no axioms other than equality.� Monoid: only the identity axiom.� Semigroup: only the assoiativity axiom.As disussed in x10.2.1, one of the �rst theorems proved in group theoryis that groups are also quasigroups. Therefore, group theory is also a speialase of these theories:� Quasigroup: the quasigroup axioms.3� Loop: quasigroups with an identity.3 The quasigroup axioms state that 8 a; b (9  s.t. a �  = b & 9 d s.t. d � a = b).



10.2 Additional Measures for Theorems 171If a theorem in group theory is true, then the same theorem may be truefor semigroups, quasigroups, monoids, loops, and so on. The more algebraisystems that the theorem an be proved for, the more general it is, and HRuses this information to help assess the interestingness of the theorem. To�nd the algebrai systems for whih a onjeture is true involves using Otterto attempt to prove the onjeture in more general algebrai systems than theone HR is building a theory in. As more onjetures HR makes turn out tobe true than false, it is more eÆient to try to prove a onjeture in algebraisystems of inreasing speialisation until it is �nally tried with the axiomsof the theory being investigated. Obviously, if the theorem is true in a moregeneral algebrai system, then it will also be true in the later, more speialisedalgebrai systems, so the proess an stop. For eah algebrai system, A, HRsimply passes the onjeture to Otter with the axioms of A instead of theaxioms of the theory being investigated.Identifying whih other algebrai systems to look at ould be partiallyautomated by enabling HR to remove axioms from the set spei�ed for thetheory being investigated. However, we allow the user to speify whih otheralgebrai systems HR should look at beause it may be desirable to hekonly ertain ones. Trying to prove a onjeture in one algebrai system afteranother obviously slows things down, so for eÆieny reasons, as soon as aonjeture is proved in one algebrai system, no more attempts are made toprove it in more speialised algebrai systems. Subjet to the proviso thatmore general algebrai systems appear before more spei� ones, the exathoie and order of the algebrai system is deided by the user. For example,quasigroups are not more general or more spei� than semigroups { theyhave di�erent axioms ompletely { so there is a hoie of whih to try �rst.This highlights a drawbak to this approah: if a theorem was proved inquasigroup theory, the user may still be interested in whether it is true insemigroup theory, but this would not be tried. A more �ne-tuned approahmay be possible to avoid this, but we have not yet implemented this.The information about the most general algebrai system the theorem istrue for an be used in various ways to estimate its interestingness. Thereis a ase that more general onjetures are more interesting, as they aretrue in more algebrai systems. There is also a ase that more speialisedonjetures are more interesting beause they point out something about thealgebrai system of interest whih is not true in other algebrai systems. Theapproah we usually adopt is to disriminate against theorems provable inmore general algebrai systems than the one we are building a theory about.This is beause, when forming a theory of say, groups, we prefer theoremswhih are true only in group theory.However, we have enabled the user to favour either more or less generaltheorems by speifying a value for eah algebrai system, with onjetureswhih are �rst proved in a partiular algebrai system soring the value for



172 10. Assessing Conjeturesthat algebrai system. For example, the user may deide that HR should hekif group theory onjetures were true in the following algebrai systems:[monoid, quasigroup, semigroup, group℄The user may also be most interested in onjetures whih are true beauseof the assoiative nature of groups. Hene they will want HR to disriminateagainst theorems provable in monoid theory and quasigroup theory (whihare not assoiative). In this ase, the user should supply values of worth foreah algebrai system, also as a list, for example:[0.0, 0.0, 0.8, 1.0℄This indiates that for the generality measure, HR should sore 0.0 for anyonjetures provable in monoid or quasigroup theory, 0.8 for onjetures prov-able in semigroup theory, but not monoid or quasigroup theory, and 1.0 foronjetures provable in group theory, but not monoid, quasigroup or semi-group theory. With these weights, this onjeture:8 G;8 a; b 2 G; a � b = b & a � b = a () a � a = b & a � a = asores 0.0 for generality, as it is true in monoid theory { in fat it is true inany algebrai system. However, this onjeture:8 G;8 a; b 2 G; a � a = b & a � b = a () a � a = b & b � a = awould sore 0.8 as it is not true in monoid or quasigroup theory, but is truein semigroup theory. This onjeture needs all the axioms of group theory tobe true: 8 G;8 a 2 G; a � a = a () a = idand thus sores 1.0.10.3 Additional Measures for Non-theoremsEvery onjeture HR makes is based on the empirial evidene provided byall the examples in its theory. If a onjeture has been disproved, a newentity must have been introdued to the theory { an interesting event. Aswith theorems, HR estimates how diÆult it was to disprove a onjeture bymeasuring these two values:� The ounterexample size. This is the size of the ounterexample foundto disprove the onjeture. Non-theorems whih required a large ounterex-ample to disprove them may be more interesting than those requiring a smallounterexample. However, if there are many varied examples in the theoryand a non-theorem was disproved by a new, small ounterexample, this mayalso be interesting. The user must therefore hoose a positive or negativeweight for this measure.



10.4 Setting Weights for Conjeture Measures 173� The number of examples. Non-theorems are often more interesting ifthey were true for many rather than just a few entities. HR reords the num-ber of entities whih were present in the theory just before the ounterexamplewas found. This favours onjetures whih appear later in theories, beausethey seem more plausible before they are disproved as there is more empirialevidene available in the theory.10.4 Setting Weights for Conjeture MeasuresAs with onepts, an overall assessment of eah onjeture is alulated usinga weighted sum of all the measures disussed above, with the weights set bythe user. Also as with onepts, after the measures for onjetures have beenalulated, they are normalised to give values between 0 and 1. Having allvalues between 0 and 1 ensures that the weights reet the relative importaneof the measures in assessing the onjetures. If required, the user an setnegative weights to disriminate against onjetures soring high for ertainmeasures.measure non-theorems open onjetures theoremstype p p psurprisingness p p pappliability p p pomprehensibility p p pproof Length pgenerality of theorem pounterexample size pnumber of examples pTable 10.1 Measures available for eah onjeture typeTable 10.1 summarises the measures available for non-theorems, openonjetures and theorems { a tik signi�es that the measure is available forthe onjeture type. If all three onjeture types were treated the same, thendefault values would have to be set for the proof length of non-theorems andopen onjetures and so on. This would be problemati, and we deided thatonepts should be assessed separately by the non-theorems, open onjeturesand theorems.To inrease exibility, the user is allowed to set weights for every mea-sure and to set a di�erent weight for the same measure when used with adi�erent onjeture type, i.e. a di�erent weight for every tik in Table 10.1.For example, if we were more interested in equivalene theorems than non-existene theorems, and were partiularly interested in theorems with longproofs, surprising open onjetures and non-theorems whih introdued largeounterexamples, we might set the weights as in Table 10.2.



174 10. Assessing Conjeturesnon-theorems open onjetures theoremsType 0.1 for equiv. 0.1 for equiv. 0.1 for equiv.Surprisingness 0.0 0.9 0.0Appliability 0.0 0.0 0.0Comprehensibility 0.0 0.0 0.0Proof Length 0.9Generality of Theorem 0.0Number of Examples 0.9Disproof Attempts 0.0Table 10.2 Possible weights set for eah measureA value for the overall interestingness of a theorem is taken as the weightedsum of the values measured for it, and a similar overall worth is alulatedfor open onjetures and non-theorems. In x10.6 we give an example alu-lation to demonstrate how the overall worth of onjetures and onepts isalulated.10.5 Assessing Conepts Using ConjeturesThe primary reason HR assesses onjetures is to help it assess the oneptsit produes. Eah onjeture disusses ertain onepts, and if HR �nds aninteresting onjeture, the onepts in the onjeture are redited aordingly.10.5.1 Independene of Measures for ConjeturesIn the AM program heuristis 9 and 65 were as follows:9 A onept is interesting if there are some interesting onjetures about it.65 A onjeture about onept X is interesting if X is very interesting.(Paraphrased from [Lenat 82℄, pages 166 and 175).This is one way in whih AM made a little interestingness go a long way. Infat, as we shall disuss in x13.1.1, of the 43 heuristis designed to assess theinterestingness of a onept, 33 of them involved passing on interestingnessderived elsewhere. The two heuristis above produe the following situation:a onept, X , is deemed to be interesting for some reason (perhaps beausethe user has expressed an interest in it). Therefore, beause of heuristi 65,any onjeture made about onept X , even those whih are uninterestingfor some reason, will be assessed as interesting. Also, beause of heuristi9, onept X will bene�t from being involved in any onjeture, whether itis interesting or not. As far as we an tell, all measures of interestingness



10.5 Assessing Conepts Using Conjetures 175for onjetures in AM were based on the interestingness of the onepts itinvolved, and no other intrinsi properties of onjetures were assessed.This approah was useful in the AM program, beause only a small num-ber of onepts ould be produed in one session and if the user expressedan interest in a onept, AM onentrated on that onept beause interest-ingness was passed around in the manner desribed above. We agree whole-heartedly with heuristi 9, as interesting onjetures about a onept addto the interestingness of that onept. While we agree with the sentiment ofheuristi 65, beause the main reason HR assesses onjetures is to help it as-sess onepts, we deided not to make onjetures interesting purely beausethey disuss interesting onepts. We preferred to assess onjetures withmeasures whih are, to as large an extent as possible, independent of theonepts disussed in the onjetures. In this way, the onepts themselvesan be assessed fairly by the onjetures made about them.Taking this notion further, we rarely ask HR to use the omprehensi-bility or appliability measures for onjetures that we disussed in x10.1.3,beause these have diret analogies with measures for onepts. That is, ifthe user is interested in omprehensible onepts, then onjetures involvingomprehensible onepts will often be fairly omprehensible, so the oneptswill bene�t twie from having simple de�nitions. A similar situation ourswith the appliability measure and with the two alternatives for measuringthe surprisingness of non-existene onjetures.While the other measures, in partiular surprisingness of equivalene on-jetures, are all dependent to a ertain extent on the onepts involved, theyare independent enough to give a fair assessment of the onepts. For anexample of this we note that, while onepts whih are omplex are ofteninvolved in onjetures with long proofs (due to the unpaking of de�nitions,et.), it is also possible for onepts whih are not omplex to be involvedin onjetures with long proofs. For example, none of the onepts in Theo-rem 10.1 on page 167 are partiularly omplex, yet the proof obtained wasof length 36. Hene the proof length measure does not, in general, rewardonepts just for being omplex, and this measure is largely independent ofthe omprehensibility measure of a onept.10.5.2 Identifying Conepts Disussed in ConjeturesWe disuss how onepts are identi�ed in onjetures by representing anequivalene onjeture in group theory using a diagram. The de�nitions inthis onjeture are not important for our disussion and we are only interestedin the way in whih the onepts were onstruted and their onept numbers.Figure 10.2 gives a diagrammati view of how this onjeture was onstruted.As portrayed by the dotted line, the onjeture arose when the exists rulewas used with onept 12. This produed a onept whih was onjeturedto be equivalent to onept 10.



176 10. Assessing Conjetures
2. [G,a,b,c] : a*b=c

8. [G,a,b,c] : a*b=c & a*c=b

compose<1243>

9. [G,a,b] : (exists c (a*b=c & a*c=b))

exists<123>

10. [G,a] : (exists b c (a*b=c & a*c=b))

exists<12>

11. [G,a,b] : (exists c (c*a=b & c*b=a))

exists<134>

12. [G,a,b] : (exists c (a*b=c & a*c=b)) & (exists d (d*a=b & d*b=a))

compose<123> compose<123>

new concept

exists<12>

Figure 10.2 Constrution path for a group theory onjetureOne approah ould be to apportion redit to any onept whih appearsin the onstrution path of a onept disussed in the onjeture. Heneonepts 2, 8, 9, 10, 11 and 12 would be redited with being involved in theonjeture. Instead, we hose to determine to whih onepts the onjetureis most relevant and redit only those, as disussed below. For example, ifa onjeture was about odd prime numbers, we redit this onept with theonjeture and not the onepts of odd numbers or prime numbers.Open equivalene onjetures disuss a (potentially) new onept whihis hypothesised to be the same as an old one, hene the new onept is notallowed into the theory (although its de�nition may be substituted for thede�nition of the old onept if the new de�nition is more omprehensible).The old onept { number 10 in Figure 10.2 { should ertainly be reditedfor the onjeture. We also deided to give redit to the parents of the newonept, as they too are intimately involved. Hene in Figure 10.2, onept 12is also redited with being in the onjeture. If the open onjeture is proved,the redits do not hange. However, if the onjeture is disproved, the newonept is introdued, as it is no longer thought to be the same as an oldonept. In this ase, we still redit the old onept, but no longer redit theparents of the new onept, preferring to redit the new onept itself.Non-existene onjetures disuss a onept whih is not allowed in thetheory, hene it annot be redited and the parents of the onept are reditedwith the onjeture instead. If the open onjeture is eventually proved, thenthe onept is still not allowed into the theory, so the redit does not hange.However, if the open onjeture is disproved, a new onept will result, andthis will be redited for the non-theorem, not its parents.



10.6 Worked Example 17710.5.3 Measures for ConeptsFor eah onept there will be a (possibly empty) set of theorems whihinvolve the onept, and a similar set of open onjetures and non-theorems.The average interestingness of the theorems a onept is redited for is takenas a measure of the interestingness of the onept itself. Similar measures arealulated for the open onjetures and theorems a onjeture is involved in.These measures are treated in the same way as measures disussed in theprevious hapter, and a weighted sum of all the measures is taken to assessthe overall worth of the onept. An alternative approah, whih we have notyet explored, is to maximise over the set of onjetures, so that a oneptwould sore well if involved in at least one interesting onjeture.We have modelled the fat that onepts about whih we an say inter-esting things are interesting. However, it is also the ase that onepts aboutwhih we an say little or nothing may be interesting. For this reason, HRreords the number of onjetures (proved, disproved or open) that a oneptis involved in. Setting a negative weight for this measure will fore HR to fo-us its onept formation around onepts for whih there are no onjetures.This enourages the formation of theories ontaining theorems about mostonepts.By using the onjetures that a onept is involved in, HR has aessto four important measures of a onept. We all these the non-theoremsore, the open onjeture sore, the theorem sore and the numberof onjetures for a onept.10.6 Worked ExampleIn a reent session, the weights for onjetures were set as in Table 10.2on page 174. We deided to assess onepts purely by their sores for non-theorems, open onjetures and theorems, and we were partiularly interestedin onepts whih had theorems with long proofs. Hene we hose weights sothat the overall worth of a onept was alulated as:0:2(non-theorem sore) + 0:2(open onjeture sore) + 0:6(theorem sore)HR started with only the axioms of group theory and onstruted 100theorems. We desribe here the alulation HR performed to evaluate theworth of the seventh onept whih had this de�nition:7: [G; a; b℄ : a � a = b:Note that we are demonstrating the alulation performed at the end of thesession, so all measures are normalised with respet to the 100 theoremsprodued.



178 10. Assessing ConjeturesConept 7 was involved in �ve onjetures, all equivalene statements:(i) a � a = b () a � b = a(ii) a � a = b () 9  s.t. (a � b =  & a � a = b)(iii) a � b =  & a � a =  () a � b =  & b � b = (iv) a � a = b () 9  s.t. (a �  = b & a � a = b)(v) a � a = b () 9  s.t. ( � a = b &  �  = b)None of these were open onjetures, so onept 7 sored zero for the openonjeture sore. However, onjeture (i) was disproved with a ounterex-ample of size 3, so it sored 3 for example size. At the end of the session,examples of size 2, 3, 4 and 6 had been used to disprove onjetures, so thenormalised sore for example size for onjeture (i) was 1/3, and there was anadditional bonus of 0.1 for being an equivalene onjeture so it sored 0.433in total. As this was the only non-theorem involving onept 7, the averagesore over all the non-theorems for onept 7 was also 0.433 and onept 7sored this for the non-theorem measure.Theorems (ii), (iii), (iv) and (v) were proved with proofs of length 2, 16,2 and 9 respetively. Normalised with respet to the other 96 theorems (themost diÆult of whih required a proof of length 32), these onjetures sored0.1, 0.6, 0.1 and 0.4 for proof length respetively. These theorems all gainedan additional 0.1 for being equivalene onjetures, so their �nal sores were0:2; 0:7; 0:2 and 0:5. Hene the theorem sore for onept 7 was the averageof these: 0:2 + 0:7 + 0:2 + 0:54 = 0:4Finally, an overall sore for onept 7 ould be alulated:Overall Sore = 0:2� 0:0 + 0:2� 0:433 + 0:6� 0:4 = 0:327By this stage, there were 62 onepts in the theory, with the highest soringonept having an overall worth of 0.583. Conept 7 was ranked 12th mostinteresting, and when the theory was extended, this position was high enoughfor it to be developed further.



10.7 Summary 17910.7 SummaryWe have adopted the notion that a onept is more interesting if there areinteresting onjetures involving it. For this reason, the main purpose of as-sessing onjetures has been to better assess the onepts they disuss. To aertain extent, this mirrors the way in whih the true worth of a onept isdetermined over time as the onept plays more of a part in the theory, andis found in diÆult and surprising results. The way in whih HR an assessonepts is fairly ompliated, as onepts are assessed by theorems whihare in turn assessed by their proofs.As with assessing onepts, there are many alternative ways to measure aonjeture whih we have not had time to investigate. In partiular, we havenot developed ways to measure the onjetures proved using HR's forwardhaining mehanism. There are many possibilities here, as HR has aess tomore information about the proofs of these onjetures than it does for thosethat Otter proves. One possibility when using HR to prove onjetures wouldbe to reord the number of proofs making use of a partiular onept as ameasure of that onept. It would be possible to do this by determining theprime impliates that involve a onept and ounting the number of sub-onjetures eah prime impliate has been used to prove. Then, oneptswhih appear in many proofs would be more interesting as they are usefulfor proving theorems.Although there are viable alternatives and extensions, we have imple-mented a ore ability to assess onepts by looking at onjetures and proofs.With information about the onjetures a onept is involved in, not only anHR make an immediate assessment of the onepts it produes, but it analter the assessment over time as the theory progresses, whih is an importantaspet of theory formation.This funtionality loses a yle of mathematial ativity whereby on-epts are formed, onjetures are made about the onepts, theorems areproved and false onjetures disproved, with information from all these a-tivities being used to assess the onepts, thus losing the yle and drivingthe heuristi searh.





11. An Evaluation of HR's Theories
1, 3, 6, 8, 11, 16, 17, 20, 22, 23, 27, 29, 35, 36, 40, 41, 44, : : :A036434. Integers whih annot be written as k + �(k) for some k.In the next three hapters, we will be assessing the HR program. There aremany ways to do this, and deiding how to evaluate HR has been a major partof this researh. We have adopted a shotgun approah [Bundy 98℄ wherebywe perform many varied tests and apply di�erent evaluation tehniques inthe hope that, taken together, they provide a fair evaluation. There are threemain areas of assessment. In Chapter 12, we assess HR in terms of disoverytasks in mathematis. In Chapter 13, we ompare HR with other programswhih perform similar tasks. In this hapter, we assess HR's theories andfrom this point, the word `theory' will be used for the olletion of examples,onepts, onjetures, theorems and proofs produed by HR in a partiularsession. This is not to be onfused with the word `domain' whih desribesan area of mathematis suh as group theory or graph theory.We test two hypotheses: (i) the theories HR produes are interesting, and(ii) heuristi searhes an be used to improve the quality of the theories.Showing that theories are interesting (or not) is a highly subjetive matter.We �rst analyse two theories produed by HR and use this analysis, alongwith our disussion in Chapter 9, to determine some desirable qualities ofHR's theories. In x11.2, we disuss qualities of onepts and in x11.3, we dis-uss qualities of onjetures. For eah quality, we assess to what extent HR'stheories possess that quality and whether �ne-tuning the heuristi searh animprove the theories with respet to that quality. To show an improvement,we ompare the theories formed by the heuristi searhes with those formedby exhaustive and random searhes.In x11.4 we look at how the heuristis an be used. We demonstrate thatthe nature of a theory depends more on the axioms than the searh strat-egy, and we assess the robustness of the measures to determine whether thesearh an be �ne-tuned. We also look at the improvements gained by prun-ing onepts and onjetures from the theory. Finally, in x11.5, we determinewhih onepts and onjetures from the mathematial literature HR's the-ories ontain, and we provide example sessions in Appendix B.



182 11. An Evaluation of HR's Theories11.1 Analysis of Two TheoriesOur aims in this setion are to give a avour of the theories HR produes, tohighlight the interesting and uninteresting results in the theory and determinesome qualities whih should be enouraged. We look at a theory of numbersand a theory of groups. HR an only prove theorems in �nite algebrai systemssuh as group theory, so to assess the theorems and proofs it produes, werequired an algebrai theory. However, in algebrai domains, HR uses a subsetof the prodution rules (see x8.2.1), so the onepts in group theory are notrepresentative of those it forms in general. Therefore, we also inlude a theoryof numbers to highlight the onept formation that HR performs.11.1.1 A Theory of NumbersHR started with the onepts of integers, divisors and multipliation for thenumbers 1 to 10. The session lasted 1000 steps, and HR sorted the oneptsevery 20 steps, using the novelty and produtivity measures with weights 0:7and 0:3 in the evaluation funtion. HR reported the following details:Summary for session in integer theory:---------------------Time taken: 120 seondsNumber of steps: 1000Number of onepts: 170Number of onjetures: 833Number of iff onjetures: 476Number of non-exists onjetures: 357Number of examples: 10Number of ategorisations: 91Number of theorems: 0Number of open onjetures: 833Number of prime impliates: 0Largest example size: 1Average proof length: 0Average surprisingness: 1.8Average P.I. proof length: 0Number of otter proofs: 0Number of HR proofs: 0Average appliability: 0.5Average omplexity: 6.4Average omprehensibility: 0.2Average novelty: 0.5Average parsimony: 0.2----------------------



11.1 Analysis of Two Theories 183In two minutes, HR produed 170 onepts and 833 onjetures. Thenumber of theorems is zero beause Otter is not used in number theory (forreasons given previously), hene none of the onjetures were proved, so noneof them were upgraded to theorems. Often, as here, the number of onjeturesis muh higher than the number of onepts, whih may be undesirable. Wedisuss how to improve the yield of onepts in x11.2.4.Categorisations.The number of di�erent ategorisations is 91, whih means that approxi-mately every seond onept produed a new ategorisation of the integers1 to 10. Relative to other theories, this is a high proportion and adds morevariety to the theory, beause onepts ahieving di�erent ategorisations arelikely to di�er more than those ahieving largely the same ategorisations.Given n entities, the number of di�erent ategorisations of the entities is thenth Bell number [Bell 34℄. The �rst few Bell numbers are:1; 2; 5; 15; 52; 203; 877; 4140; 21147; 115975; 678570; : : :Hene, there are 115,975 di�erent ways to ategorise the numbers 1 to 10, soHR annot be expeted to over more than a small fration of these. Thistheory has a relatively good yield of ategorisations, but others where thenumber of ategorisations is as low as 10 an be very uninteresting. Whenbrowsing a theory whih HR has formed, we often start by looking at thoseonepts whih were �rst to ahieve a ategorisation. In x11.2.3 we disusshow to inrease the yield of ategorisations.Conepts.The most disappointing aspet of this theory is that the majority of theonepts are built from the divisors onept and only a handful involve mul-tipliation, whih was also supplied by the user. This is a lear drawbak tothe heuristi searh: beause the onepts are sorted early on, it sometimeshappens that one of the user-given onepts is plaed at the bottom of theagenda and never gets developed. One way around this would be to delaysorting the onepts for a while until all the user-given onepts have beenused in some theory formation steps. HR has a mehanism for delaying theinitial sorting whih we have sometimes used to good e�et.To assess the onepts, we determined the perentage of onepts whihwe lassed as interesting. Firstly, these onepts held little interest for us:10. [I ℄ : I � I = I11. [I ℄ : I = jfd : djIgjThese are dull beause the only numbers whih satisfy them are 1 and f1; 2grespetively. In general, we �nd onepts whih disuss only a small, �nitenumber of entities uninteresting. Of the 170 onepts, 13 (7.5%) were un-



184 11. An Evaluation of HR's Theoriesinteresting for this reason and we disarded them. These inluded oneptssuh as even prime numbers. We feel this is an aeptable level, but in othertheories the number of suh onepts is higher and we disuss this problemin x11.2.1.Next, we found this onept diÆult to understand:43. [I;N ℄ : N = jfd1 : d1jIgj & 2 = jfd2 : d2jNgj& � (N jI & I = jfd3 : d3jNgj)This onept is of omplexity 7 as de�ned in x9.3.1, but our diÆulty wasnot with the overall omplexity of the de�nition, rather with the last lause,whih negates a onjuntion. It took some time to interpret the onept as:the number of divisors, n, of integers, i, for whih the number of divisors ofi is prime and either n does not divide i or i is not equal to the number ofdivisors of n. This is both overly ompliated and overly speialised due tothe introdution of disjuntion through negating a onjuntion. Of the 157onepts remaining, 54 (32%) were uninteresting for similar reasons. It wouldbe possible to redue the number of suh onepts by instruting HR not tonegate onjuntions. However, sometimes these onepts an be interesting(see x11.1.2) and we feel they should be in the output, even if they areeventually disarded by the user.Having disarded the 13 onepts with low appliability and the 54 on-epts whih were too ompliated, there were 103 left. Of these, 24 wereharateristi funtions of other onepts, i.e. a funtion outputting 1 if theinteger input is of a partiular type and 0 if not. For example, HR de�nedthis funtion:35. [I;N ℄ : N = jfM :M = jfd : djIgj & 2jIgjwhih returns a 1 if I is even and zero otherwise. While harateristi fun-tions are valid onepts { many sequenes in the Enylopedia of IntegerSequenes are harateristi funtions { we were less interested in these on-epts and more interested in the onepts fow whih they were harateristifuntions.After disarding the 24 harateristi funtions, we lassed the 78 on-epts remaining as interesting, whih was 46% of the overall total. Therefore,92 onepts (54%) were uninteresting due to either low appliability, diÆultde�nitions or beause they were harateristi funtions. This perentage islower than we hoped for, but the remaining onepts were very interest-ing. In partiular, as we shall disuss in x11.5.3, many were re-inventions ofwell known onepts and there were also some new interesting sequenes notpresent in the Enylopedia (see x12.3 in the next hapter). Noting that wean prune the onepts with low appliability and/or low omprehensibil-ity (as disussed later in x11.4.3), whih leaves the interesting onepts justmentioned, we feel that the quality of the onepts is satisfatory.



11.1 Analysis of Two Theories 185Conjetures.We look now at the equivalene and non-existene onjetures HR madewhile theory forming. Firstly, the quality of these onjetures is poor, whihis one of the reasons we implemented more sophistiated tehniques (namelyextrating prime impliates, as disussed in x11.1.2, and using the Enylope-dia of Integer Sequenes, as disussed in Chapter 12). We assessed that onlyaround 6% of the onjetures were interesting. There were four main reasonsfor this. Firstly, onjetures reet the quality of the onepts they disussand we found that onjetures involving onepts with low appliability wereuninteresting. There were 301 onjetures (36%) with appliability 0.1. Inpartiular HR made 32 onjetures whih were e�etively about the numberone, e.g. onjeture 9: I � I = I () 1 = jfd : djIgjWe found the majority of the onjetures with appliability 1 uninterestingand used HR to prune these from the theory. We also pruned those onjetureswhih only applied to the numbers 1 and 2, leaving 513 in total.Conjetures involving onepts with low omprehensibility were also un-interesting, espeially equivalene onjetures, where it was neessary to un-derstand two ompliated onepts. We assessed that onjetures with a om-prehensibility lower than 1/9 (as de�ned in x10.1.3) were too ompliated tounderstand. Of the 513 onjetures left, 114 were too ompliated and wepruned them, leaving 399.Thirdly, we found that many onjetures were atually simpler ones indisguise, suh as onjeture 319, a non-existene result:8 I; � N s.t. N = jfd1 : d1jIgj & 2 6 jN & 2 = jfd2 : d2jIgjWhen this onjeture is unpaked, it states simply that 2 divides 2. HRdid not identify the simple result this onjeture disguised { we stated inx4.1.2 that we have not modelled an ability to re-write onept de�nitionsand onjeture statements into more suint presentations. We intend toimplement this ability in future.Also, two simpler onjetures were often ombined into an uninterestingresult. For example, when HR �nds onjetures of the form 8 x; P (x) and8 x; (Q(x) () R(x)), it often states later that P (x) & Q(x) () R(x),whih is simply a ombination of the previous results. For example, onjeture19 repeated onjeture 9 above and onjeture 3 (that 1 divides all numbers):I � I = I () 1jI & 1 = jfd : djIgjFinally, the forbidden paths mehanism disussed in x6.9.1 stops HRmaking many onjetures whih are instanes of tautologies (and henenot very interesting). However, HR still makes some tautology onjetures,suh as non-existene onjetures of the form: � x (P (x) & � P (x)). This



186 11. An Evaluation of HR's Theorieshappens due to a tehnial problem with the split prodution rule whihstops HR from realising that it is onjoining a lause and its negation. Weintend to �x this problem. Similarly, HR makes onjetures of the form�x (P (x) & � (Q(x) & � P (x))) where Q(x) is a property whih is truefor all x, for example being divisible by 1. These are again tautologies giventhat Q(x) is true for all x. However, as HR annot prove anything in numbertheory, disarding suh onjetures may lose us some interesting ones. Oneway around this would be to supply HR with some trivially true onjeturesto start with, suh as the fat that 1 divides everything.Of the 399 onjetures left, we sampled 100 and deemed 87% of them to beuninteresting beause they were tautologies, simple ombinations of previousresults or simpler onjetures whih were disguised. Hene approximately 52out of 833 in total were deemed to be interesting, whih is around 6%. Of theonjetures remaining, we found those whih identi�ed fundamental featuresof the given onepts, as disussed in x11.5.3, the most interesting.Clearly, there are still many problems with HR's onjeture making. Theseproblems are mainly due to how it forms onepts, and more restritive on-straints on onept formation should redue the number of uninteresting on-jetures. While it is possible to prune many uninteresting onjetures usingHR's measures, it would be better if these were never made. Note that HR anbe instruted to prune onjetures as it is forming the theory, but we preferto see all the onjetures in a theory and hoose whih to prune ourselves.Summary.Even though HR foused on the divisors onepts and rarely used multi-pliation in this theory, we still found 78 onepts of interest. However, themajority of onjetures made during theory formation were uninteresting andwe have explained some of the reasons for this (and pointed out that we havemore sophistiated tehniques for forming onjetures). HR formed the entiretheory in only two minutes on a Sun Ultra 10 omputer, so we feel that thelevel of interestingness is suÆient for suh a short session. Furthermore, aswe shall see in x11.5.3, the theory also ontained some lassially interestingonepts.11.1.2 A Theory of GroupsHR started with only the axioms of group theory and ran for 500 steps,sorting onepts after every 20 steps, using the produtivity measure (seex9.4.1). It used the forward haining mehanism disussed in x8.2.3 to provetheorems and only used Otter when this failed. At the end of the session, HRprodued the following report:



11.1 Analysis of Two Theories 187Summary for session in group theory:---------------------Time taken: 4648 seondsNumber of steps: 500Number of onepts: 143Number of onjetures: 337Number of iff onjetures: 330Number of non-exists onjetures: 7Number of examples: 6Number of ategorisations: 18Number of theorems: 325Number of open onjetures: 7Number of prime impliates: 301Largest example size: 8Average proof length: 5.6Average surprisingness: 2.4Average P.I. proof length: 5.8Number of otter proofs: 301Number of HR proofs: 574Average appliability: 0.8Average omplexity: 4.9Average omprehensibility: 0.2Average novelty: 0.1Average parsimony: 0.1----------------------The 143 onepts in this theory were less interesting than those in thetheory of numbers beause the size and split prodution rules were omittedto enable Otter to prove the theorems. Also, HR did not develop the oneptof inverse elements for the same reason it failed to develop multipliationin the session desribed previously, i.e. beause the onept was put at thebottom of the agenda early on and never made it to the top. We onentratehere on the examples, onjetures, theorems and proofs produed.Conjetures.From the 330 equivalene onjetures, HR extrated 301 prime impliateswhih had an average proof length of 5.6. The largest proof length was 25 forthis prime impliate:8 a 2 G (9 b;  (a � b =  & b �  = a & � (a � b =  & b � a = ))) 9 d; e (d � e = a & e � a = d) & � (d � e = a & e � d = a))On the whole, the prime impliates were more interesting than the theo-rems from whih they were extrated, beause there was no redundany, i.e.



188 11. An Evaluation of HR's Theoriesno lauses whih ould be removed without making the theorem false. Someof the prime impliates, suh as the one above, inluded negation of onjun-tions, whih we mentioned in x11.1.1 an sometimes make onjetures andonepts uninteresting. However, in this theory, this atually added interest.In partiular, the 66th onjeture was the following:8 a; b;  2 G; a � b =  & b �  = a & � (a �  = b &  � a = b)() a � b =  & b �  = a & � (a � b =  &  � a = b)Neither Otter nor HR ould prove this sub-onjeture:a � b =  & b �  = a & � (a �  = b &  � a = b)) �(a � b =  &  � a = b)As a result, onjeture 66 was passed to MACE and a ounterexample of size8 was found: * 0 1 2 3 4 5 6 70 0 1 2 3 4 5 6 71 1 0 3 2 5 4 7 62 2 3 1 0 6 7 5 43 3 2 0 1 7 6 4 54 4 5 7 6 1 0 2 35 5 4 6 7 0 1 3 26 6 7 4 5 3 2 1 07 7 6 5 4 2 3 0 1This group is Q8 and it is unusual to see suh a large ounterexample.We found the majority of the prime impliates to be interesting, for ex-ample, this one of proof length 11 was not obvious to us (but was fairly easilyproved): 8 a; b;  ( � b = a & a � a = b) b �  = a)The 91 prime impliates with a proof length of 2 or less were not as interest-ing, but still ontained some important results, inluding fundamental fatsabout the identity element:8 a; b (a = id) a � b = b)8 a (a = id) a � a = a)Other prime impliates with short proofs were less interesting, for examplethis one:8 a; b 2 G; 9  ( � a = b & a �  = b & b � b = a)) b � b = a:This highlights the fat that prime impliates an also be instanes of tau-tologies. However, while this is not an interesting result, it may be useful inHR's forward haining mehanism, where very simple results suh as this arerequired to prove more ompliated onjetures. Also, these results usuallyhave a small proof length, so they an be pruned very easily.



11.1 Analysis of Two Theories 189Sub-onjetures and Proofs.Of the 875 sub-onjetures, 574 were proved by HR, with 301 proved by Ot-ter. We found the proofs produed by HR easy to understand on the whole.However, sometimes ertain steps in the proofs were not obvious. For exam-ple, in the following proof, the third line of the proof (below the dotted line)is less obvious than the other three, whih are obviously true.all a b  (a*=b & a*a= * a*= -> b=id).------------------------------------------all a b  (a*= -> a=id).all a b  (a=id & a*a= -> =id).all a b  (a*=b & a=id -> a*b=).all a b  (a*b= & =id & a=id -> b=id).The longest of HR's proofs was of length 7, i.e. it required 7 prime impliatesto get from the premises to the goal. In other theories proofs of lengths upto 12 are produed, indiating that HR an prove some fairly ompliatedresults.Counterexamples.Five groups were introdued as ounterexamples to these non-theorems:� 8 a 2 G (a = id () 9 b;  (a � b = )) disproved by C2.� 8 a; b 2 G (a � a = b () a � b = a) disproved by C3.� 8 a; b;  2 G (a � b =  () a � b =  & b � a = ) disproved by D(3).� 8 a; b;  2 G; a � b =  & b �  = a & � (a �  = b &  � a = b)() a � b =  & b �  = a & � (a � b =  &  � a = b) disproved by Q8.� 8 a 2 G (9 b;  (b �  = a &  � b = a & b � b = )() 9 d; e (d � a = e & d � e = a & a � a = d)) disproved by C5.There were no ases where a ounterexample also disproved a previously openonjeture. These events usually our after more than 1000 theory formationsteps, but for an example ourring relatively early, see the session in xB.3.Open Conjetures.Seven onjetures remained open at the end of the session, the �rst being:8 G; 9 a; b;  s.t.a � b =  &  � a = b & a 6= id () 9 d; e; f (d � e = f & d � f = e & d 6= id)



190 11. An Evaluation of HR's TheoriesHR proved that the right hand side implied the left hand side, so we triedto prove that the left hand side implied the right. We an simplify this byremoving variables b; e and f to give:8 G (9 a;  (a � ( � a) =  & a 6= id)) 9 d (d � d = id & d 6= id))We gave Otter an hour to prove this, but it failed. Similarly, MACE ould not�nd a ounterexample. We passed the onjeture to the \group-pub-forum"1mailing list and Geo� Smith supplied a sketh proof involving entralisers.This was used to provide the following indutive proof, supplied by AntonyMaioia:� a 6= id) a 6= a�1� a �  � a = ) �1 � a �  � a = id) �1 � a �  = a�1 6= a� �1 � a �  = a�1 ) �2 � a � 2 = �1 � a�1 �  = a.� �2 � a � 2 = �1 � a�1 �  ) a � 2 =  � a�1 �  and �1 � a�1 �  = a ) � a�1 �  = 2 � a; hene 2 � a = a � 2� We are now going to show by indution that: a � 2n+1 � a = 2n+1.� From the hypothesis of the theorem, the base ase, n = 1, is true, so assumethat a � 2n�1 � a = 2n�1.� Therefore, multiplying both sides by 2, we get: 2 � a � 2n�1 � a = 2n+1and the left hand side an be re-written as a� (2 � 2n�1)�a, whih is simplya � 2n+1 � a.� Finally, a ase split. Firstly, if  is of even order (say 2m), then hoosingd = m will prove the theorem. Alternatively, if  is of odd order, say 2m+1,then a2 = id, (using the equation in the box), so a is a andidate for d. 2Therefore, this onjeture was suÆiently interesting to warrant a proof froma group theorist. It is also interesting that, while Otter proves similar on-jetures without a problem in under 10 seonds, it was unable to prove thistheorem after an hour.Summary.We found the theory very interesting due to the presene of non-trivial andinteresting ounterexamples, proofs, prime impliates and open onjetures,all of whih provided areas of investigation. Note that we perform a similarexploration of an anti-assoiative algebra theory in x12.2, and we presentsessions from group and semigroup theories in Appendix B.1 The home page of this mailing list is: www.bath.a.uk/~masgs/gpf.html



11.2 Desirable Qualities of Theories { Conepts 19111.2 Desirable Qualities of Theories { ConeptsIf we an improve the average quality of the onepts, the theory as a wholewill be more interesting. To assess whether the heuristi searh an be used toimprove the quality of the onepts, we use a total of 1140 theories. Eah the-ory was produed using 1000 steps. After 1000 steps, theories ontain roughlybetween 100 and 500 onepts and between 500 and 900 onjetures, so thereis enough material to assess their nature and make detailed omparisons.The theories are of numbers, graphs and groups and we alulate aver-ages over all 1140 theories. In x11.4.2, we look at di�erenes between domains,but, in order to indiate how HR will perform in a general domain, we do notpresent results here whih are spei� to a partiular domain. To ompare thee�etiveness of the heuristi measures, we ran sessions using two measures inthe overall evaluation funtion. The measures were taken from: appliability,omprehensibility, novelty, parsimony and produtivity as disussed in Chap-ter 9. For eah pair of measures, m1 and m2, the weight w1 for m1 was variedover the range f0:0; 0:1; : : : ; 1:0g and the weight for m2 was set to 1 � w1.Furthermore, we ran eah session four times, with di�erent searh setups:� Setup 1: onepts are sorted after every 10 new onepts and the produ-tion rules are not sorted.� Setup 2: onepts are sorted after every 20 steps and the prodution rulesare not sorted.� Setup 3: onepts are sorted after every 10 new onepts and the produ-tion rules are sorted.� Setup 4: onepts are sorted after every 20 steps and the prodution rulesare sorted.Note that the prodution rules were sorted in terms of the quality ofthe onepts they produe, as disussed in x9.6.2. We have not experimentedwith sorting the onepts after higher numbers of onepts or steps, althoughwe plan to do so. On average, sorting after every 20 steps tends to produeslightly more sorting than after every 10 new onepts, beause new oneptstend to appear after around every three steps.The qualities assessed in x11.2.1 to x11.2.4 are (i) the average appliabil-ity of the onepts, (ii) the average omprehensibility of the onepts, (iii)the average number of ategorisations the set of onepts ahieved and (iv)the average number of onepts produed. For eah one, we determined themean value over all the theories and we assessed whether this was aept-able. We also determined whether the use of partiular heuristi measureswill improve the theory. The measures under investigation are as above: ap-pliability, omprehensibility, novelty, parsimony and produtivity. We wereinterested in whether the use of a partiular measure m alone would inrease



192 11. An Evaluation of HR's Theoriesthe quality of the theory, so we looked at theories where the weight for mwas 1 in the evaluation funtion. We also looked at whether making m thedominating measure inreased the quality, so we averaged over the theorieswhere m was given a weight greater than 0:5. Similarly, we looked at whetherusing m with any weight greater than 0 inreased the quality of the theory.Finally, we looked at theories where m was not used at all. We also tookthe best two measures and determined whether any of the four searh setupsprodued a further improvement and whih weighting of the two measuresprodued the best results.As well as the theories formed using a heuristi searh, theories were alsoformed using depth �rst, breadth �rst and random searhes as disussed inx9.1. Table 11.1 ontains the mean appliability, omprehensibility, numberof ategorisations and number of onepts, averaged over all 1140 theories.It also ontains the largest and smallest value observed, as well as the aver-age over the depth �rst, breadth �rst and random searhes. Table 11.1 alsoontains the average over the theories produed using the four searh setupsdesribed above. We will refer to this table in setions x11.2.1 to x11.2.4 toassess any improvements given by the heuristi searhes.
Heuristi Measure Mean Smallest Largest Breadth Depth RandomAppliability 0.551 0.295 0.883 0.622 0.563 0.577Comprehensibility 0.197 0.156 0.288 0.254 0.190 0.197Categorisations 65.4 10.0 185.0 42.0 62.7 50.3Conepts 265.3 109.0 489.0 192.7 246.7 242.5Heuristi Measure Setup1 Setup2 Setup3 Setup4Appliability 0.555 0.547 0.555 0.548Comprehensibility 0.196 0.199 0.194 0.199Categorisations 65.6 64.0 64.8 67.1Conepts 272.3 258.2 263.5 267.5Table 11.1 Average values for qualities of theories11.2.1 Average Appliability of ConeptsIn x11.1, we highlighted some overly speialised onepts, for instane on-epts only satis�ed by the number 1. Table 11.1 shows that the average ap-pliability over all the theories is 0.551. Thus, on average, a onept appliesto more than half the entities in the theory. We believe this is aeptable, asit is not too low and not too high { a theory with no speialisation would



11.2 Desirable Qualities of Theories { Conepts 193be just as dull as a theory whih was too speialised. This value was betterthan we expeted, as HR's prodution rules perform speialisations whihan lead to very speialised onepts. Table 11.1 also indiates that breadth�rst searhes outperform the depth �rst and random searhes. This is un-derstandable beause breadth �rst searhes produe onepts with smalleronstrution histories, so there will be less speialisation. We investigate theperformane of the heuristi searhes below. Also, searh setups 1 and 3 pro-due slightly better results than 2 and 4, but the di�erene is not marked.Measure 1 > 0:5 > 0 0Appliability 0.630 0.590 0.582 0.532Comprehensibility 0.619 0.581 0.560 0.546Novelty 0.506 0.531 0.536 0.561Parsimony 0.485 0.493 0.513 0.576Produtivity 0.531 0.564 0.565 0.543Table 11.2 Average appliability of oneptsTable 11.2 ontains the average appliability of onepts in theoriesformed using partiular measures. On average, theories produed using theappliability or omprehensibility measures in the evaluation funtion hadhigher appliability than the mean (0.551). However, only the appliabilitymeasure performed better than the breadth �rst searh (whih sored 0.622).Hene the appliability measure, whih was designed to inrease appliabilityof the theories, is worth employing. This also shows that developing oneptswith high appliability will lead to more suh onepts. The improvementover the breadth �rst searh is not as marked as we hoped it would be. How-ever, this is understandable beause all of HR's prodution rules produemore speialised (less appliable) onepts, so a breadth �rst searh will pro-due high appliabilities on average, beause it builds on the least developed,hene most appliable, onepts.With both the appliability and omprehensibility measures, the best ap-proah was to give them weight 1 in the evaluation funtion, i.e. using noother measure. Of the measures whih perform badly, parsimony should beavoided if more appliable theories are required. This is understandable asmore parsimonious onepts have smaller data tables, hene the onepts willbe less appliable.In Table 11.3, the average appliabilities of onepts is given, with thee�et of the appliability and omprehensibility measures examined in theontext of the four searh setups. The best results were produed using theappliability measure weighted 1 with searh setup 3 (sorting after every 10new onepts and allowing the prodution rules to be sorted also). However,the omprehensibility measure also produed good results when weighted 1using searh setup 1. Again, the best results were produed when no othermeasure was used.



194 11. An Evaluation of HR's TheoriesMeasure Setup 1 > 0:5 > 0Appliability 1 0.626 0.597 0.593Appliability 2 0.621 0.580 0.575Appliability 3 0.658 0.599 0.590Appliability 4 0.614 0.574 0.572Comprehensibility 1 0.655 0.586 0.559Comprehensibility 2 0.618 0.571 0.549Comprehensibility 3 0.596 0.595 0.574Comprehensibility 4 0.609 0.572 0.557Table 11.3 Average appliabilities of theories by searh setupUsing searh setup 3, Figure 11.1 shows the hange in average oneptappliability as the weight of the appliability measure is inreased (withthe weight of the omprehensibility measure dereased aordingly). While aweight of 0.9 for omprehensibility produes good results, a weight of 0.9 forappliability produes bad results. Conversely, a weight of 1.0 for appliabilityprodues the best results, but a weight of 1.0 for omprehensibility produesthe worst results. We have yet to explain this anomaly. The best result was0.658, an improvement of 19% over the mean (0.551).
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Applicability measure weightFigure 11.1 Average appliability of onepts for theories onstruted using theappliability and omprehensibility measuresTo summarise, we found that HR's theories have an aeptable level ofappliability on average, and using the appliability measure an improve theappliability of theories, espeially with searh setup number 3.



11.2 Desirable Qualities of Theories { Conepts 19511.2.2 Average Comprehensibility of ConeptsAs mentioned in x9.3.1, omprehensibility is a desirable quality of a theory.We de�ned the omplexity of a onept to be the number of onepts in itsonstrution path and the omprehensibility measure to be the reiproal ofthis. The theories used for this assessment were all limited to a omplexityof 8, hene most of the onepts are fairly understandable. From Table 11.1on page 192, the mean omprehensibility of onepts is 0.197. Therefore, theaverage onept will have around give onepts in its onstrution history.Below are three representative onepts of omplexity 5 from number, graphand group theory. [I ℄ : 9 N (N = jfd : djIgj & 2jN)[G; e1℄ : 9 n1 (n1 is on e1 & (8 e2(n1 is on e2)))[G; a℄ : a = a�1 & 2 = jfb : b = b�1gjComparing these to the following onept of omplexity 8:[I ℄ : 9 N s.t. N = jfd1 : d1jIgj & 2jI & � (N jI & I = jfd2 : d2jNg)jwe see that with a omplexity limit of 8 imposed, the onepts produedare aeptably omprehensible on average. Further reduing the omplexitylimit would inrease the omprehensibility of the theory. However, this wouldrestrit the range of onepts formed, and it may be preferable to employ ahigh omplexity limit suh as 8, but enourage more omprehensible onepts.Table 11.1 on page 192 indiates that the breadth �rst searh outperformsdepth �rst, as expeted. Also, the results for searh setups 1 to 4 hardly di�er.Measure 1 > 0:5 > 0 0Appliability 0.247 0.203 0.203 0.193Comprehensibility 0.233 0.217 0.216 0.185Novelty 0.205 0.189 0.191 0.201Parsimony 0.191 0.188 0.188 0.203Produtivity 0.176 0.179 0.185 0.205Table 11.4 Average omprehensibility of theoriesTable 11.4 ontains the average omprehensibilities of onepts in theoriesformed using partiular measures with partiular weight ranges. The ompre-hensibility and appliability measures perform the best, produing theorieswith average omprehensibility higher than the mean of 0.197. This is beausethey prefer more omprehensible and less speialised onepts respetively.It was surprising that appliability outperformed omprehensibility, but weo�er an explanation for this below.



196 11. An Evaluation of HR's TheoriesNeither using the omprehensibility measure nor the appliability measureprodues more omprehensible theories than those produed by the breadth�rst searh, whih sored 0.254. This is beause the heuristi searhes pro-dued more onepts than breadth �rst searhes. The number of oneptswith omplexity 2 is small and there are fewer than with omplexity 3 and soon. Therefore, any searh whih produes more onepts is likely to produeless omprehensible ones on average. In fat, as we shall disuss in x11.2.4,the omprehensibility measure is the best for inreasing the yield of onepts.This also explains why appliability outperforms omprehensibility in termsof the average omprehensibility of the onepts: searhes using omprehensi-bility produe more onepts than those using appliability. Of the measureswhih perform badly, produtivity should be avoided if omprehensible the-ories are required.Measure Setup 1 > 0:5 > 0Appliability 1 0.249 0.202 0.204Appliability 2 0.248 0.204 0.206Appliability 3 0.245 0.199 0.200Appliability 4 0.247 0.201 0.204Comprehensibility 1 0.236 0.219 0.216Comprehensibility 2 0.231 0.216 0.217Comprehensibility 3 0.229 0.215 0.213Comprehensibility 4 0.233 0.218 0.217Table 11.5 Average omprehensibility of theories for di�erent searh strategiesTable 11.5 ontains the average omprehensibility of the onepts in the-ories built using the di�erent searh setups with the appliability and om-prehensibility measures. The best results are obtained when the measures areweighted at 1. On average, searhes using only the appliability measure willprodue onepts with omprehensibility around 0.25 (as opposed to 0.2, themean). Also, searh setup 1 (sorting after every 10 new onepts with theprodution rules not sorted) slightly outperforms the others, but not by amarked amount.Using searh setup 1, Figure 11.2 shows how the average omprehensi-bility of onepts hanges as the weight of the appliability measure is in-reased, with the weight for omprehensibility dereased aordingly. Thereis an almost monotoni inrease as the weight of appliability is inreased.This on�rms that appliability is the better measure for inreasing the om-prehensibility of theories.In summary, with a omplexity limit of 8, the average omprehensibilityof onepts is 0.2 after 1000 steps, whih is aeptable. This an be improvedto around 0.25 (an inrease of 25%) with breadth �rst, appliability or om-prehensibility searhes.
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Applicability measure weightFigure 11.2 Average omprehensibility of onepts in theories formed using theappliability and omprehensibility measures11.2.3 Number of CategorisationsAs disussed in x11.1, onepts ahieving new ategorisations are generallyinteresting, and enouraging the formation of many di�erent ategorisationsof the entities will produe more interesting theories. In Table 11.1 on page192, the mean number of ategorisations is 65.4, but theories were formedwith as many as 185 di�erent ategorisations and as few as 10. The depth,breadth and random searhes do not produe more than the mean. We hadexpeted depth �rst searhes to produe many di�erent ategorisations, but,while they outperform the breadth �rst and random searhes, they do notahieve more than the mean. Also, searh setups 1 and 4 produe more at-egorisations than the mean.Measure 1 > 0:5 > 0 0Appliability 35.9 59.6 61.3 68.0Comprehensibility 54.4 64.1 59.7 69.0Novelty 62.9 76.9 74.6 59.5Parsimony 49.4 58.4 64.9 65.7Produtivity 63.8 71.1 68.2 63.6Table 11.6 Average number of ategorisations in theoriesTable 11.6 ontains the average number of ategorisations for searhesusing di�erent measures. The novelty and produtivity measures performed



198 11. An Evaluation of HR's Theorieswell. This was expeted, beause the novelty measure was designed for thistask { it favours onepts ahieving new ategorisations { and the produtiv-ity measure enourages the prodution of more onepts, whih in turn pro-dues more ategorisations. Using the best measures weighted at 1 produedworse results than the average of using them with any weight greater than0.5. In fat, no measure used alone produes more ategorisations than themean (65.4). However, the novelty and produtivity measures produe morethan the mean number of ategorisations if they are the dominant measure inombination with another. This suggests that the measures are too fousedwhen used alone, whih is also a problem with the invariane and disrimi-nation measures (see x12.1). Of the measures performing badly, appliabilityshould be avoided when more ategorisations are required. Comprehensibilityand parsimony also perform badly.Measure Setup 1 > 0:5 > 0Novelty 1 54.0 71.1 72.4Novelty 2 68.3 77.7 75.5Novelty 3 51.7 77.4 72.9Novelty 4 77.7 81.8 77.6Produtivity 1 68.3 70.8 69.0Produtivity 2 64.7 67.7 62.9Produtivity 3 72.3 74.8 71.1Produtivity 4 49.7 76.1 69.7Table 11.7 Average number of ategorisations in theoriesTable 11.7 ontains the average number of ategorisations in theories pro-dued using the di�erent searh setups with the novelty and produtivitymeasures. Searh setup 4 performed the best for both novelty and produ-tivity when these measures are the dominating ones in ombination withanother. Searh setup 4 sorted the prodution rules as well as the oneptsand sorted them more often on average, after 20 steps rather than after every10 new onepts. This suggests that these measures are most e�etive whenused more frequently.Using searh setup 4, Figure 11.3 shows the hange in the number ofategorisations as the weight of the novelty measure inreases, with the weightof the produtivity measure dereasing aordingly. Interestingly, any non-zero weight for the novelty measure produed a good result. The best resultof 86 ategorisations ame using a weight of 0.9. This is an inrease of morethan 13% over the mean. Figure 11.3 also highlights the redution in numberof ategorisations when the novelty weight hanges from 0.9 to 1.0.To summarise, we have highlighted that the novelty measure produesmore ategorisations, as it was designed to do. To produe the best results,it should be a dominating measure ombined with another, although anypositive weighting produes good results. Furthermore, it appears that searh
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Novelty measure weightFigure 11.3 Average number of ategorisations in theories onstruted using thenovelty and produtivity measuressetup 4 is the best for this task beause it performs relatively more sortingof both the onepts and the prodution rules.11.2.4 Number of ConeptsAs mentioned in x11.1.1, more onjetures than onepts are usually pro-dued. Sometimes, this may be interesting, but on other oasions, the usermay be more interested in onepts than in onjetures and it may be desir-able to enourage the prodution of a higher proportion of onepts. FromTable 11.1 on page 192, the mean number of onepts produed is 265.3. Eahtheory formation step produes either a onept or a onjeture, so in 1000steps, the mean number of onjetures produed is 734.7. Hene on averagethere are around 2.75 more onjetures than onepts. The breadth �rst,depth �rst and random searhes produe less onepts than the mean, butusing searh setups 1, 3 or 4 will produe more onepts. Setup 1 performspartiularly well.Table 11.8 ontains the average number of onepts produed using par-tiular heuristi measures. The produtivity measure, whih was designed toinrease the number of onepts, performed well, but, as with the measuresin x11.2.3, the best results are produed when produtivity is the dominat-ing measure in ombination with another. Surprisingly, the omprehensibilitymeasure signi�antly outperforms the other measures, inluding produtiv-ity. This is partiularly interesting beause the omprehensibility measure



200 11. An Evaluation of HR's Theories1 > 0:5 > 0 0Appliability 212.6 259.1 260.8 268.3Comprehensibility 319.5 299.2 274.0 259.8Novelty 226.8 260.1 269.6 262.6Parsimony 195.1 218.3 244.5 278.6Produtivity 273.1 284.8 280.6 255.6Table 11.8 Average number of onepts in theoriesenourages searhes similar to those produed by the breadth �rst searh(see Table 11.12 below), yet produes 20% more onepts.Examination of the theories produed using the omprehensibility mea-sure showed that the suess was due to it enouraging the development ofall the user given onepts. As mentioned in x11.1.1, in other theories, some-times only one of the user-supplied onepts is developed and less oneptsare formed as a result. This suggests either delaying the sorting of the on-epts initially as mentioned above, or, as suggested in x9.8, providing HR witha new measure alulating the number of user-given onepts from whih theonept is built.2 Of the measures whih perform badly, parsimony should beavoided when a high yield of onepts is required.Measure Setup 1 > 0:5 > 0:1Comprehensibility 1 342.0 304.9 286.4Comprehensibility 2 314.7 301.3 267.8Comprehensibility 3 314.3 281.0 264.9Comprehensibility 4 307.0 310.4 276.9Produtivity 1 292.7 286.6 287.5Produtivity 2 268.7 280.3 271.2Produtivity 3 266.0 279.8 281.0Produtivity 4 265.3 298.3 282.7Table 11.9 Average number of onepts in theoriesTable 11.9 ontains the average number of onepts for the di�erent searhsetups using the omprehensibility and produtivity measures. Searh setup1 performs the best most often, espeially when the measures are used withweighting 1. Using searh setup 1, Figure 11.4 shows the hange in averagenumber of onepts as the weight of the omprehensibility measure inreases,with the weight of the produtivity measure dereasing aordingly. Interest-ingly, weighting these measures equally produes more onepts than weight-ing just the omprehensibility measure. The maximum number of oneptsof over 360 is obtained when omprehensibility is given a weight of 0.9. Thisis an inrease of around 36% over the mean (265). Hene, while omprehen-2 This would be similar to the way in whih ross-domain onepts are preferredin [Steel 99℄.



11.3 Desirable Qualities of Theories { Conjetures 201sibility outperforms produtivity, the best results are only obtained whenprodutivity is used in ombination with omprehensibility.
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Comprehensibility measure weightFigure 11.4 Average number of onepts in theories onstruted using the om-prehensibility and produtivity measuresTo summarise, while produtivity as a dominating measure will inreasethe number of onepts, using an equal weight of produtivity and ompre-hensibility will produe more. Furthermore, using a weight of 0.9 for om-prehensibility with 0.1 for produtivity will produe the most onepts onaverage, and searh setup 1 is the best for this task.11.3 Desirable Qualities of Theories { ConjeturesAs with onepts, inreasing the average quality of the onjetures, theoremsand proofs will improve the appeal of the theory as a whole. Using Otter andMACE to settle onjetures is very time onsuming: the average time takenfor 1000-step sessions is around two hours as opposed to just seven minuteswhen they are not used. For this reason, we have performed less experimen-tation { in terms of the theories produed and the heuristis investigated {than in x11.2. In partiular, no theories were produed using a ombinationof two measures. Also, the appliability of onjetures was not assessed be-ause this is overed to a large extent by the appliability of onepts, asmore appliable onepts produe more appliable onjetures.



202 11. An Evaluation of HR's TheoriesTheories of groups, quasigroups and rings were used for the assessment.These domains were hosen as they represent di�ering omplexities in theiraxioms, with quasigroups having simple axioms, groups having more om-pliated axioms and rings having more ompliated axioms still. For eahdomain, a theory was produed using breadth �rst, depth �rst and randomsearhes, as well as searhes using the surprisingness and proof length mea-sures of onjetures and the produtivity measures of onepts. A omplexitylimit of 6 was imposed and searh setup number 4 as desribed in x11.2 washosen. This hoie was prompted by the relative suess of this setup in theexperiments desribed in x11.2. The way in whih HR attempted to provethe onjetures was varied (i.e. the proof strategy). There were three ap-proahes: (i) using Otter to prove the entire onjeture, (ii) breaking theonjeture into sub-onjetures (as desribed in x8.2.2) and using Otter oneah one and (iii) breaking the onjeture into sub-onjetures and �rst usingHR to prove eah one (see x8.2.3), followed by Otter (if HR failed). In total,54 theories were onstruted. Beause this is suh a small number, the resultsare not as onlusive as in x11.2.11.3.1 DiÆulty and Surprisingness of ConjeturesTable 11.10 ontains the mean proof length and surprisingness of onjeturesover all the theories, as well as the values for theories built using the sixsearh strategies disussed above. The results are very disappointing: use ofthe proof length measure produes an average proof length less than the meanand while the surprisingness measure produes more surprising onjeturesthan the mean, it is outperformed by both the proof length and produtivitymeasures.We also note that the mean surprisingness is just 1.64, so on averagethe left hand and right hand sides of a onjeture will involve only one or twodi�erent onepts.Searh Strategy Av. Proof Length Av. SurprisingnessMean 9.08 1.64Breadth 8.21 1.49Depth 8.61 1.36Random 11.02 1.64Surprisingness 7.42 1.73Produtivity 11.86 1.83Proof Length 7.29 1.78Table 11.10 Average proof length and surprisingness for di�erent searh strategiesThere are many possible reasons for the bad performane. Firstly, ourheuristi searh is designed to inrease the overall quality of onepts ratherthan onjetures. Using measures for onjetures is removed from this ap-



11.3 Desirable Qualities of Theories { Conjetures 203proah, beause HR sorts the onepts, yet we assess the quality of on-jetures. The proof length measure is twie removed beause HR sorts thetheorems in terms of their proofs and sorts the onepts in terms of their the-orems. Hene, the power of the heuristi searh may be somewhat diluted.The bad results may also be due to the over-fousing e�et we disussedin x11.2.3. Using an older but similar version of HR for results ollated in[Colton et al. 99b℄ we found that an equal weighting of the proof length andthe surprisingness measure produed theorems with larger proof lengths thanthe mean. Also, with a omplexity limit of 6 for the onepts in these sessions,the onjetures produed will be less omplex, so there may be less sope for�nding surprising or diÆult onjetures.11.3.2 Proportion of Theorems and Open ConjeturesWhile open onjetures are often very interesting, sometimes it may be desir-able to enourage a higher proportion of theorems. One way to do this wouldbe to enourage the prodution of easy to prove onjetures by weighting thediÆulty and surprisingness measures negatively. However, this would resultin many uninteresting theorems, whih is undesirable. As mentioned in x8.2.2,splitting equivalene onjetures should give Otter a better hane of provingtheorems. Also, as mentioned in x8.2.5, the advantages of using HR's forwardhaining mehanism to prove theorems are (i) more human-readable proofsand (ii) the prodution of prime impliates, whih, as disussed in x11.1.2,are often more interesting than the theorems themselves. We also mentionedthat the speed up from HR proving sub-onjetures quikly is balaned bythe extration and pruning of prime impliates.We assess whether breaking the onjeture into sub-onjetures inreasesthe proportion of onjetures whih are proved. We also assess whether theuse of sub-onjetures inreases the time for the session. Table 11.11 ontainsthe mean, largest and smallest proportion of all onjetures whih were provedand the mean, longest and shortest session time. It also ontains the sameinformation averaged for eah di�erent proof strategy. To reap, strategy 1used Otter to prove the theorem in its entirety, strategy 2 broke the onjetureup into sub-onjetures and proved eah one using Otter, and strategy 3 brokethe onjeture up, but used HR to prove the sub-onjetures.Table 11.11 shows that the average proportion of onjetures whih wereproved was 90%, hene there was little room for improvement. Proof strate-gies 2 and 3 prove slightly more theorems, but the di�erene is very small.As with the proof length results, the poor performane here may be due tothe omplexity limit for the onepts. With the limit set at 6, the onje-tures will not be very ompliated, so the e�et of splitting onjetures intosub-onjetures may not be as e�etive as it might be with more ompliatedonjetures. As expeted, splitting the onjetures into sub-onjetures andproving them doubles the time taken to omplete the session. However, usingHR's forward haining mehanism is faster than using Otter to prove the



204 11. An Evaluation of HR's TheoriesProportion of Theorems Time (s)Mean 0.900 4037Largest 1.000 12854Smallest 0.660 673Proof strategy 1 0.888 2368Proof strategy 2 0.904 5003Proof strategy 3 0.908 4739Table 11.11 Proportion of theorems to open onjetures and session timessub-onjetures. Therefore, espeially onsidering the additional advantagesdisussed above, we an reommend using HR to prove the sub-onjetures.11.4 Using the Heuristi SearhAs shown above, the heuristi measures an be used to improve the qualityof the theories produed. However, this may be problemati for some of thereasons given in this setion. In partiular, the measures require robustness,as disussed in x11.4.1. Also, it may be diÆult to predit the nature of atheory formed in a new domain, as disussed in x11.4.2. Finally, the use ofthe heuristi measures for pruning theories after they have been formed isdisussed in x11.4.3.11.4.1 Robustness of the Heuristi MeasuresObviously, altering the evaluation funtion should alter the searh performedand hene the theory onstruted { if the searh is never altered by adjustingthe weight of a measure, then the measure is redundant. However, it is alsodesirable that the measures have a ertain degree of robustness and do notradially hange the theory if a small hange is made to their weight in theevaluation funtion. With a set of robust measures, it is possible to �ne-tune HR to produe theories with a partiular quality. Without robustness,suh �ne-tuning will be diÆult beause a slight hange in a parameter maydramatially alter the theory produed.As HR's searhes build new onepts from old ones, it may su�er from abuttery e�et: small hanges in the assessment of the initial onepts maybe greatly magni�ed as the searh progresses. It is therefore instrutive todetermine how muh a theory will hange if a small hange in the weighting ofthe heuristi measures is made. The following alulation gives an indiationof how similar two theories are:Given theories T1 and T2, then if the set of onepts in T1 is C1 and theset of onepts in T2 is C2, we de�ne the onept overlap of T1 and T2 as:



11.4 Using the Heuristi Searh 205onept overlap(T1; T2) = C1 \ C2C1 [ C2This alulates the proportion of onepts whih appear in both theories.In general, we have found that if two onepts have the same data table,there is a high likelihood that the onepts are the same. For this reason,in the above de�nition, two onepts are onsidered the same if they havethe same data table. This overestimates how similar two theories are, due toinstanes where two di�erent onepts have the same data table. However,if two onepts were onsidered equal only if they have the same de�nition,there would be many more ases where two equivalent onepts were lassedas di�erent beause they had di�erent de�nitions.A more sophistiated approah would be to prove that the two de�nitionsare equivalent (as HR does while forming a theory). However, this is a verytime-onsuming proess and HR annot do this in graph theory or numbertheory. We have assumed that if two theories ontain similar onepts, theywill ontain similar onjetures, theorems and proofs. Again, this may not bethe ase in ertain irumstanes, but we believe the alulation gives a goodindiation of how similar two theories are.The values for the onept overlap alulation depend on how many stepshave been used to onstrut the theory: starting with the same initial on-epts, after a few steps it is likely that the theories will be very similar,but after many steps they will di�er more. For this reason, we alulatethe average onept overlap of two theories T1 and T2 as the average ofonept overlap(T1; T2) taken over eah theory formation step. That is, aftereah theory formation step, we determine the proportion of onepts whihare found in both theories. We then average this over all the theory formationsteps and de�ne the di�erene between theories T1 and T2 to be:100� (1� average onept overlap(T1; T2))This gives a perentage whih indiates not only how di�erent the ompletedtheories are, but also how they di�ered as they were onstruted.In order to gauge the robustness of the measures, we �rst estimate howdi�erent two theories will be in general. Table 11.12 ontains the di�erenealulated between theories formed using a breadth �rst searh [B℄, depth�rst searh [D℄, random searh [R℄, and searhes favouring onepts withhigher appliabilities [A℄, omprehensibilities [C℄, novelties [N℄, parsimonies[Pa℄ and produtivities [Pr℄. The theories were formed in number theory, withthe onepts sorted after every 10th new onept.The most dissimilar theories were formed using the depth �rst and noveltysearh. This was surprising, as the novelty measure tends to produe moredepth �rst searhes. However, it appears that the depth �rst searh di�ersgreatly from all other searhes { the theories it produes share on averageat most 30% of its onepts with any other theory. Also, the appliabilityand omprehensibility searhes produe theories relatively similar to those



206 11. An Evaluation of HR's TheoriesB D R A C N Pa PrB 0 77.0 53.2 30.5 37.7 60.8 64.2 58.9D 77.0 0 77.6 78.8 69.7 81.4 78.3 81.2R 53.2 77.6 0 48.0 61.0 60.5 62.0 62.2A 30.5 78.8 48.0 0 42.8 70.1 72.1 70.5C 37.7 69.7 61.0 42.8 0 73.5 74.9 72.9N 60.8 81.4 60.5 70.1 73.5 0 31.7 30.3Pa 64.2 78.3 62.0 72.1 74.9 31.7 0 43.2Pr 58.9 81.2 62.2 70.5 72.9 30.3 43.2 0Table 11.12 The di�erenes between 8 theoriesprodued by the breadth �rst searh. This is beause the appliability andomprehensibility measures both enourage a breadth �rst searh by prefer-ring less speialised and less ompliated onepts respetively. Preditably,the depth �rst and breadth �rst searhes produe theories whih di�er greatly,indeed they di�er by 77%.We found similar results in graph theory and group theory and with dif-ferent searh parameters, e.g. sorting the onepts after every 20 theory for-mation steps. The other results are not summarised as our intention is onlyto give an indiation of how di�erent two theories an be in general. The av-erage of the results in Table 11.12 is 62% whih an be taken as an estimateof how di�erent two theories are on average, i.e. they will share only 38% oftheir onepts.We assessed the robustness of the appliability, omprehensibility, novelty,parsimony and produtivity measures. To do this, the set of 1140 theories de-sribed in x11.2 was used. We looked at the number, graph and group theoriesseparately and alulated the di�erene of every pair of theories where thesame two measures and searh setups were used. For eah measurem, the dif-ferene between every pair of theories formed using m was alulated. Then,the di�erenes between theories where the weighting of the two measuresdi�ered by only 0.1 were averaged, for example the theories formed usingnovelty and parsimony weighted at h 0.3, 0.7 i and h 0.4, 0.6 i respetively.Table 11.13 ontains the set of averages and also inludes a mean of the valuesover the three domains.Measure Number Graph Group MeanAppliability 21.2 23.8 16.9 20.6Comprehensibility 15.8 22.7 20.6 19.7Novelty 14.3 32.9 25.4 24.2Parsimony 17.8 28.7 26.1 24.2Produtivity 22.8 32.0 30.0 28.3Table 11.13 Robustness of measures at weight hange 0.1 for di�erent domains



11.4 Using the Heuristi Searh 207The values in this table should be interpreted in the following manner:when working in a partiular domain, altering the weight for the measureby 0.1 will result in a theory whih di�ers by the perentage in the table.For example, when working in number theory, altering the weight of theomprehensibility measure by 0.1 will result, on average, in a theory whihdi�ers by 15.8%. Change in weightingMeasure 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9Appliability 20.6 28.6 35.0 40.8 45.2 48.1 50.4 51.9 53.6Comprehensib. 19.7 27.7 34.1 39.7 44.0 48.0 53.3 53.6 55.3Novelty 24.2 32.1 37.9 42.9 46.9 49.8 52.9 54.7 57.1Parsimony 24.2 32.5 38.9 45.7 50.9 54.2 57.4 58.9 60.6Produtivity 28.3 35.0 40.1 44.6 48.4 51.1 53.6 55.3 57.9Average 23.4 31.2 37.2 42.7 47.1 50.2 53.5 54.9 56.9Table 11.14 Robustness of measures by hange in weightingTable 11.14 ontains the same alulations for a hange in 0:1; 0:2; : : : ; 0:9in the weighting of the measures. On average, hanging a measure by 0:1 willresult in a theory whih di�ers by around 23% from the original, hanging ameasure by 0:2 will result in a 31% hange and so on. A smaller value wouldallow �ner-tuning, but it is lear that a small hange will not radially alterthe theory formed, and the di�erene is muh less than the average di�erenebetween theories we determined in Table 11.12, whih was 62%. The valuesin table 11.14 show that some degree of �ne-tuning should be possible, but itmay be diÆult to predit how a theory will hange with an alteration in theevaluation funtion. On examination of di�erent theories, we have found thatthis is due in part to a buttery e�et aused by HR building new oneptsfrom old ones, whih we mentioned above.11.4.2 Di�erenes Between DomainsWe have deliberately avoided presenting results broken down into individualdomains in order to indiate how HR will perform in any theory. This isimportant as we hope that HR will be used in domains other than group,graph and number theory. While we have shown that the heuristi searh animprove the theories in general, it must be emphasised that muh experimen-tation in a partiular domain may be required in order to ahieve the desiredresults. This is beause there are big di�erenes between theories formed indi�erent domains and so it may not be possible to predit the nature of atheory in advane.Table 11.15 ontains summaries of theories in 10 algebrai domains, on-struted using a breadth �rst searh [B℄, depth �rst searh [D℄ and a searh



208 11. An Evaluation of HR's Theories
algebra searh onepts theorems onjetures examples largestexample ategorisations prooflength appliability omprehensibility parsimonygroup B 132 341 2 5 6 10 10.77 0.808 0.300 0.054D 151 309 5 6 6 15 8.74 0.799 0.264 0.043P 145 321 2 6 6 17 8.19 0.786 0.255 0.068IP-loop B 108 363 4 4 4 9 17.69 0.815 0.303 0.078D 145 317 3 5 5 14 12.90 0.764 0.257 0.057P 113 349 6 4 4 11 15.32 0.752 0.273 0.120loop B 173 168 135 8 6 28 4.33 0.858 0.274 0.037D 157 186 137 8 5 25 3.88 0.869 0.237 0.022P 163 194 114 7 5 28 4.05 0.821 0.257 0.055medial B 287 128 59 12 4 116 3.86 0.780 0.250 0.028quasigroup D 218 199 61 11 4 87 3.98 0.780 0.215 0.017P 310 133 25 10 4 114 3.59 0.778 0.234 0.039moufang B 122 139 212 4 4 10 6.14 0.756 0.278 0.073quasigroup D 122 182 174 4 4 7 3.27 0.773 0.230 0.049P 137 152 178 4 4 10 4.04 0.754 0.254 0.096quasigroup B 296 125 53 16 5 149 3.79 0.781 0.251 0.024D 224 201 53 11 5 89 4.01 0.787 0.214 0.017P 310 133 25 11 4 124 3.53 0.783 0.234 0.037ring B 233 240 4 8 4 32 10.06 0.922 0.300 0.031D 216 249 19 8 4 46 13.07 0.793 0.246 0.020P 135 335 5 4 4 12 10.14 0.746 0.260 0.096Robbins B 66 124 284 3 4 3 17.67 0.803 0.317 0.109algebra D 100 207 163 3 4 3 8.04 0.730 0.267 0.078P 71 233 167 3 4 4 22.91 0.793 0.286 0.117semigroup B 351 103 17 14 5 155 4.47 0.750 0.238 0.033D 320 98 66 13 3 151 5.97 0.802 0.210 0.013P 295 146 18 14 5 164 4.23 0.753 0.237 0.040TS B 131 342 0 6 6 21 9.30 0.705 0.252 0.061quasigroup D 104 330 41 5 4 14 11.30 0.719 0.229 0.042P 124 341 6 5 4 21 11.34 0.697 0.241 0.107samedomain 32.00 37.20 23.80 1.07 0.40 10.80 2.21 0.033 0.027 0.028differentdomain 97.14 107.11 86.86 4.51 0.90 60.45 5.86 0.053 0.031 0.037Table 11.15 Summary of theories for 10 di�erent algebrai systemsusing the proof length of onjetures as the heuristi measure [P℄. The theo-ries were formed over 500 steps, starting from the axioms with a omplexitylimit of 6. In the ase of the heuristi searh, searh setup 4 was employed (asdesribed on page 191). The table ontains the number of onepts, theorems,onjetures, examples and ategorisations as well as the largest example size,average proof length of the theorems and average appliability, omprehensi-bility and parsimony of the onjetures. The table also ontains the averagedi�erene of the values between any two theories formed in the same domain.Aordingly, the average di�erene between the values for theories formed indi�erent domains is given.The most important result is that the theories di�er muh more betweenalgebrai systems than they do between searh strategies for the same alge-brai system. For example, the number of onepts di�ers by on average 32between theories in the same domain, but by 97 between theories from di�er-ent domains. We feel it is very important that the axioms of a domain shouldditate the nature of the theories produed more than the searh strategy,or indeed any hange in the way HR operates. However, this does emphasisethat for eah domain, while we an say, for instane, that the novelty mea-



11.4 Using the Heuristi Searh 209sure will probably inrease the number of ategorisations formed, it will bediÆult to predit how many ategorisations in total will be produed for apartiular domain.11.4.3 Pruning Using the Heuristi Measures
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Perentage of onepts prunedFigure 11.5 Inrease in quality due to pruning using single measuresThe user an prune the lowest soring onepts and onjetures from atheory in order to produe a higher quality, lower quantity theory. The useof pruning for onjetures has been disussed in x11.1.1 and we look here atthe e�et of pruning the onepts. Pruning is problemati beause we maydisard some interesting results as the heuristi measures are not guaranteed3to keep only the most interesting results. To analyse the gain in the quality ofonepts through pruning, we looked at the theory from x11.1.1 and prunedvarying perentages of the onepts to see the improvement in the averageappliability, omprehensibility and parsimony of the onepts.Figure 11.5 above shows the inrease in omprehensibility when 50%, 80%and 90% of the least omprehensible onepts were removed. Similarly, theinrease in the appliability is shown when 50%, 80% and 90% of the leastappliable onepts were pruned, and the inrease in parsimony is similarly3 But, by de�nition, all heuristis are prone to this problem [Simon 00℄.



210 11. An Evaluation of HR's Theoriesreorded. There is a sizeable inrease in the average values for every measure.In partiular, by removing 80% or more of the onepts, the quality withrespet to eah measure roughly doubles.
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Perentage of onepts prunedFigure 11.6 Inrease in quality due to pruning using a ombination of measuresObviously, pruning using a partiular measure and assessing the result us-ing the same measure is bound to produe an improvement. We have inludedthe above results mainly to indiate how muh an inrease in quality an begained through pruning. We also sorted the onepts using equal weightsfor the appliability, omprehensibility and parsimony measures. Figure 11.6shows the hange in the average value for these measures when the worst 50%,80% and 90% of the onepts were removed. For the appliability and ompre-hensibility measures, we see a marked inrease in the average value. However,the parsimony measure dereases. This is beause onepts with high appli-ability often have high omprehensibility but low parsimony. Hene the bestonepts { when sorted using equal weights for the three measures { will bethose soring well for appliability and hene omprehensibility, and pruningwill atually derease the value for parsimony.To onlude, if the user is interested in onepts of generally high quality,sorting and pruning the onepts using a ombination of measures shouldinrease the quality with respet to some of the measures. However, the av-erage value for other measures may derease due to a onit between themeasures.



11.5 Classially Interesting Results 21111.5 Classially Interesting ResultsThe aim of the HR projet has been to implement a model of theory forma-tion with the mathematial abilities required to produe interesting theories.As disussed in the next hapter, our intention for HR has mainly been theappliation to disovering new results rather than to demonstrate how dis-overies ould have been made historially (whih is the purpose of manyomputer simulations in psyhology, philosophy and the history of siene).However, in testing the hypothesis that HR's theories are interesting, it wouldbe diÆult to laim this is true if the theories ontained no results from themathematial literature. Hene we determine whih `lassially interesting'onepts and onjetures are re-invented in HR's theories. Furthermore, thereare ertain fundamental onepts suh as prime numbers in number theorywhih are so important that if HR did not re-invent them, we ould onludethat the model of theory formation was in need of improvement.By the term `lassially interesting' we mean simply a onept or onje-ture whih has appeared in the mathematial literature. We disuss belowwhih resoures were used to determine some of the lassially interestingresults in various domains. When we laim that HR re-invented a well knownonept, we mean that the onept it invented had exatly the same examplesas the lassially interesting one. This doesn't mean that the onepts hadexatly the same de�nition, only that the de�nitions were logially equiva-lent. For some onepts, the de�nitions were equal to the well known ones, orwere trivially equivalent. For other onepts, the de�nitions were far enoughremoved to require a proof of the equivalene. In either irumstane, there-invention was interesting: it is important that there are onepts for whihHR also re-invents the same de�nition, yet the onepts HR re-invents withnon-standard de�nitions may highlight a new property of the well knownonept. To laim that HR re-disovered a onjeture, we show that the twoonjetures make equivalent laims about the same onepts.HR's re-inventions in graph theory, group theory and number theoryare examined in x11.5.1 to x11.5.3. For eah domain, we determine whihlassially interesting onepts and onjetures were re-invented and sup-ply illustrative examples in evidene of our laims. We also list some fun-damental results whih HR has not yet re-invented and supply reasonswhy they are missed. In group theory, John Humphrey's group theory textbook [Humphreys 96℄ was onsulted to �nd the lassially interesting results,whereas in graph theory we onsulted various Internet resoures4 on elemen-tary graph theory to ollate a set of well known onepts. In number theory,we used the Enylopedia of Integer Sequenes as desribed in x2.7, beausethis is an extensive database of number theory onepts.4 Suh as those found here:http://www.mathworld.wolfram.omhttp://www.utm.edu/departments/math/graph/glossary.html



212 11. An Evaluation of HR's TheoriesFor the re-invention of lassially interesting onepts, we intended toindiate whih ones were assessed as interesting by HR. However, we foundthis highly problemati and misleading for the following reasons. Firstly, espe-ially in number theory, so many di�erent theories have been formed duringthe development of HR that on ertain oasions one onept might havebeen assessed as very interesting, yet on other oasions it might have beenassessed as very uninteresting, beause there are so many di�erent possi-bilities for the evaluation funtion. Furthermore, if a lassially interestingonept C is output, then HR's heuristi searh has sueeded { the oneptsupon whih C were built must have been assessed as interesting during thesearh, otherwise C would not have been reahed. Hene, whereas disoveringand ignoring onept C is only a partial suess, we believe it is muh moreimportant that a lassially interesting onept is output than whether it isfound interesting after it is output.It is important to remember that we are not omparing HR's theorieswith the theories from mathematis. Rather, we are testing the hypothesisthat HR's theories ontain lassially interesting results in order to assess thebigger question of whether HR's theories are interesting. To produe a fairassessment, for eah onept and onjeture, we indiate whether �ne-tuningof the heuristi searh was required to make the re-invention. In the aseswhere �ne-tuning was employed, we disuss what was involved. Fine-tuningof the hoies for the searh, as opposed to �ne-tuning HR's soure ode is avalid experiment providing that we indiate that this was the ase. In fat,as we see in x11.5.3, restriting the searh to �nd a partiular onept anoften lead HR to �nd other lassially interesting onepts along the way. Wealso indiate whether the de�nition of a re-invented onept was obviouslyequivalent to the well known one or if the equivalene required a proof.11.5.1 Graph TheoryOf the three domains disussed here, we introdued HR to graph theorythe latest and we have done the least amount of testing in graph theory.In partiular, we have yet to look through the onjetures that HR makes inorder to identify any lassially interesting ones. However, HR has suessfullyre-invented some well known and fundamental onepts from graph theory,sometimes with a de�nition whih highlighted an interesting property we werenot aware of. In Table 11.16 we list the 20 lassially interesting onepts wehave so far identi�ed in HR's theories. The table is broken into three setions:relationships between elements and edges, numerial invariants and graphtypes. Fine-tuning was not required for HR to re-invent any of these onepts,exept loops and pseudo-graphs, where we had to supply some graphs whihatually had some loops { HR usually starts with simple, onneted graphs,whih have no loops.We did not expet HR to re-invent many lassially interesting oneptsin graph theory beause they are often of a topologial nature, for example



11.5 Classially Interesting Results 213Conept De�nitionAdjaeny [G; n1; n2℄ : 9 e1 s.t. (n1 is on e1 & n2 is on e1)Centre of stars [G; n1℄ : 8 n2 (9 e1 s.t. n1 is on e1 & n2 is on e1)Endpoint [G; n1℄ : 1 = jfe1 : n1 is on e1gjLoop [G; e1℄ : 1 = jfn1 : n1 is on e1gjInternal node [G; n1℄ : 1 6= jfe1 : n1 is on e1gjDegree [G; n1; N ℄ : N = jfe1 : n1 is on e1gjNo. edges [G;N ℄ : N = jfe1 : node(e1)gjNo. endpoints [G;N ℄ : N = fjn1 : 1 = jfe1 : n1 is on e1gjgjNo. degrees [G;M ℄ : N = jfM : 9 n1 s.t. M = jfe1 : n1 is on e1gjgjNo. nodes [G;N ℄ : N = jfn1 : node(n1)gjClosed [G℄ : � n1 s.t. 1 = jfe1 : n1 is on e1gjComplete [G℄ : 8 n1; n2 9 e1 s.t. n1 is on e1 & n2 is on e2Cyle [G℄ : 8 n1; 2 = jfe1 : n1 is on e1gjNo degree 2 node [G℄ : 8 n1; 2 6= jfe1 : n1 is on e1gjNon-trivial [G℄ : 1 6= jfn1 : node(n1)gjOnly 1 yle [G℄ : 9 M s.t. M = jfn1 : node(n1)gj&M = jfe1 : edge(e1)gjPseudo-graph [G℄ : 9 e1 s.t. 1 = jfn1 : n1 is on e1gjRegular [G℄ : 9 M s.t. (8 n1 M = jfe1 : n2 is on e1gj)Star [G℄ : 1 = jfn1 : 8 n2(9 e1 s.t. n1 is on e1 & n2 is on e1)gjTrivial [G℄ : 1 = jfn1 : node(n1)gjTable 11.16 17 lassially interesting graph theory oneptsplanar graphs. However, it was surprising that HR re-invented onepts suhas stars, whih have a very visual avour. It did not take too muh e�ort toshow that these de�nitions are equivalent to the ones given in graph theorytexts. For example, it is lear that a graph is a yle if and only if it has allnodes of degree two. De�ning yles in this way, we also found that a similarlyde�ned onept { graphs with no node of degree two { was found in theliterature, namely they are ounted in sequene A005636 of the Enylopediaof Integer Sequenes. We also found the onept of graphs with only one ylein the Enylopedia: sequene A001429 ounts the number of them with nnodes. As portrayed in Figure 11.7, these also have a visual avour as theyare simply yles with additional endpoints added. HR invented these asgraphs where the number of nodes equals the number of edges and a proofof equivalene is required.It is instrutive to look at the onepts whih HR does not �nd in graphtheory to speulate on some areas for future development. Firstly, if HRstarted with di�erent onepts, it may �nd many more lassially interestingonepts. In partiular, given the onept of olouring a graph, HR wouldbe able to invent onepts suh as the hromati number using the size pro-dution rule. Furthermore, giving HR the deomposition of graphs into sub-graphs would open many new avenues for it, and we expet it would re-inventonepts suh as liques.



214 11. An Evaluation of HR's Theories

Figure 11.7 A graph with only one yleSeondly, the introdution of the path prodution rule (whih we willdisuss in x14.1.1) should enable HR to invent the onept of a path in agraph, as well as many other onepts in other domains whih we have men-tioned throughout the book. This should lead to onepts suh as onnetedgraphs, where every pair of nodes are onneted by a path. However, for thisHR would have to be supplied with the onept of general graphs, ratherthan onneted graphs that it presently starts with. The introdution of the\extreme" rule de�ned by Graham Steel [Steel 99℄ should also enable HR toreah more lassially interesting onepts suh as the maximum degree in agraph.Thirdly, if HR ould form ross-domain theories (to be disussed inx14.3.2), it would be able to re-invent onepts suh as graphs with anodd number of nodes, a very important onept invented by Euler to solvethe K�onigsberg bridges problem [Euler 36℄, [Trudeau 76℄. Similarly, allowingtopologial domains to be developed alongside graph theory will enable HRto re-invent onepts suh as planar graphs. However, topologial domainsmay present representation problems, disussion of whih is beyond the sopeof this book.11.5.2 Group TheoryIn algebrai domains suh as group theory, we have been more interestedin enabling HR to ombine onept formation, onjeture making, theoremproving and ounterexample �nding. For this reason we have onentratedless on identifying the lassially interesting onepts and onjetures HRre-invents, so it may be the ase that more of HR's results are found in theliterature. So far, we have identi�ed 14 onepts that HR has re-invented andnine onjetures, but a more extensive study may reveal more.Firstly, we ran HR with only the onept of group multipliation to seewhether it would re-invent the onepts of identities and inverse. Not onlydid it do so, but it also onjetured that the identity element is unique in agroup and that inverse elements are unique to eah element. It did so using



11.5 Classially Interesting Results 215the size prodution rule, e.g. in the ase of identity elements, it de�ned theidentity element followed by the number of identity elements in a group, thenonjetured that this number is always 1. Therefore, the onjetures werenot proved, beause numerial onjetures are not passed to Otter. When weintrodued the onept of identity elements and inverses, HR proved somefundamental results about these as prime impliates. For example, in thetheory desribed in x11.1.2 on page 186 above, HR produed this onjeture:8 a; b;  2 G; a � b =  &  = id () a � b =  & b = a�1and extrated some prime impliates, inluding:8 a; b;  2 G; a � b =  &  = id) b = a�1whih highlights an important relationship between the identity element andthe inverse funtion.With �ne-tuning, HR also re-invents the onept of assoiative triples andmakes the onjeture that all triples are assoiative. The �ne-tuning onsistedof inreasing the arity threshold of the onepts to 7 (see x9.6.3) and onlyusing the ompose and exists prodution rules to produe the onept ofassoiative triples:[G; a; b; ℄ : 9 d; e; f (a � b = d & d �  = e & b �  = f & a � f = e)Hene, HR re-invents all the axioms of group theory and obviously the on-epts required to state them (exept multipliation whih is always given).However, it only found assoiativity with �ne-tuning, beause it required on-epts with arities higher than the default threshold of 4. It also highlightssome fundamental fats about the identity and inverse elements.Seondly, some of the onepts HR re-invents involve ommutativity. Inpartiular, the onepts of Abelian groups, entral elements (and thus theentre), the size of the entre and one element entralising another wereall re-invented by HR. In the third hapter of [Humphreys 96℄, Humphreysexplores some elementary onsequenes of the axioms and HR re-invents someof the results found there. In partiular, HR noties and proves that all groupsare quasigroups (proposition 3.3 in [Humphreys 96℄), whih is an importantresult enabling the onstrution of multipliation tables. See xB.2 for a sessionwhere HR does this.HR also proves orollary 3.5 from [Humphreys 96℄, that 8 x; (x�1)�1 = x.HR states this as: 8 a; b (inv(a) = b) inv(b) = a)Furthermore, HR also proves exerise 3.1 in [Humphreys 96℄, whih statesthat if all elements in a group are self-inversing, then the group is Abelian.



216 11. An Evaluation of HR's TheoriesObviously, to do this, HR re-invents self-inversing elements. It also re-invents squaring of an element (a � a) whih is developed in hapter 3 of[Humphreys 96℄. However, Humphreys' development leads to the onept ofpowers of elements and assoiated theorems, whih HR does not re-invent.We hope that the path prodution rule we plan to implement will over this,whih we disuss in x14.1.1.Two fairly ompliated onepts were invented: (i) groups with an oddnumber of elements { de�ned in a non-standard way as groups with everyelement on the diagonal of the multipliation table { and (ii) groups with onlyone entral element, whih is an important property of symmetri groups. Inthe �rst ase, it was neessary to prove that the de�nition was equivalent togroups with an odd number of elements.Finally, while HR invents the onjugation of elements (i.e. a � b � a�1),whih is a key onept in group theory, in partiular for de�ning normalsubgroups, HR does not develop the onept of normal subgroups. Amongstother reasons, this is beause HR does not start with the deomposition ofgroups into subgroups and has no prodution rules whih an invent theonept of subgroups, although we plan an `embed' prodution rule whihwill enable this (see x14.1.1). Beause HR doesn't invent normal subgroups,there is no possibility of it inventing many more of the fundamental oneptsin group theory suh as quotient groups and omposition series.There are many other onepts and related onjetures whih HR does notre-invent. Firstly, it annot produe ross domain onepts suh as p-groups(with a prime number of elements), elementary Abelian groups or Sylowsubgroups, beause it annot mix group theory onepts and number theoryonepts. Graham Steel has, however, enabled HR to perform ross-domaintheory formation, as we shall disuss in x14.3.2, and this is an important areafor future researh. Seondly, HR requires the path prodution rule we planto implement (see x14.1.1) to produe reursive de�nitions suh as the orderof elements. Without this onept, HR annot re-invent yli groups, animportant onept, partiularly in the lassi�ation of �nite Abelian groups.As with graph theory, we see that the yield of lassially interesting on-epts and onjetures is not partiularly high. However, HR does invent somefundamental onepts suh as entres, Abelian groups, self-inversing elementsand onjugation. More importantly, it also re-invents the axioms of group the-ory and noties some fundamental results about the nature of inverses andidentities.11.5.3 Number TheoryWe desribe the projet in x12.3 to invent interesting new integer sequeneswhih are missing from the Enylopedia of Integer Sequenes using HR.This has been our prime motivation for studying HR's output in numbertheory, but we have also reorded all the sequenes HR produed whih were



11.5 Classially Interesting Results 217already in the Enylopedia { lassially interesting onepts. The entire setof re-invented sequenes an be found at:http://www.dai.ed.a.uk/~simono/researh/hrThe projet to invent new integer sequenes is on-going, hene the list of re-inventions will also extend. At present, HR has re-invented over 120 sequenesfrom the Enylopedia. We provide a representative sample of those sequeneshere.We have studied the lassially interesting onjetures less beause, asdisussed in x11.1.1, the onjetures formed during theory formation are ofa low quality in general, and we have preferred to use the method disussedin x7.5 to �nd onjetures, namely data-mining the Enylopedia. However,this tehnique has been mainly used to explore the new sequenes disoveredby HR rather than to �nd onjetures about the lassially interesting se-quenes it has re-invented. We assess the data-mining tehnique in x12.3 andwe onentrate here on the integer sequenes that HR has re-invented.We look �rst at the onepts from the theory of numbers desribed inx11.1.1, to give an indiation of the yield of lassially interesting onepts ina partiular theory. To reap, the theory was built mainly using the divisoronept, and multipliation was largely ignored. While this was not desirable,it meant that more speialised onepts were built around the onept ofdivisors. Table 11.17 ontains 15 onepts out of the 170 HR produed whihwere found in the Enylopedia along with the de�nition HR produed, alongwith an indiation as to whether the de�nition is the standard one.There are some anomalies in Table 11.17. Firstly, most of the re-inventionshave non-standard de�nitions. In all the ases, it was not diÆult to provethat HR's de�nition and the lassial one were equivalent. For example, at thebeginning of the 20th entury, 1 was onsidered a prime number and sequeneA005180 reords this: it is the sequene of prime numbers with 1 appendedat the front. HR re-invents this onept with the de�nition: integers wherethe number of divisors N is equal to the number of divisors of itself. Onlytwo numbers are equal to the number of their divisors, 1 and 2. Hene, HR'sonept de�nes integers with either 1 or 2 divisors. Only the number one has1 divisor, and prime numbers have two divisors, so the equivalene of thede�nitions is lear. Composite numbers are de�ned as the ompliment to thissequene. Also, a similar onstrution ours when HR re-invents sequeneA006005 (odd primes together with one).Seondly, it is unusual that the onept of non-squares is produed be-fore the onept of square numbers. This is beause non-squares are de�nedas integers with an even number of divisors, and it takes some knowledgeof number theory to prove that non-squares (and only non-squares) satisfythat de�nition. Later, HR de�nes square numbers as integers with an oddnumber of divisors. Ordinarily, in theories where HR develops multipliation,it produes the usual de�nition for square numbers (being written a� a forsome a).



218 11. An Evaluation of HR's TheoriesConept no./ Conept/HR's de�nition Stand.A-number defn.4 � (n) [number of divisors of n℄ yesA000005 [I;N ℄ : N = jfd : djIgj5 even numbers yesA005843 [I℄ : 2jI12 prime numbers yesA000040 [I℄ : 2 = jfd : djIgj19 odd numbers yesA005408 [I℄ : 2 6 jI35 harateristi funtion of even numbers noA000035 [I;N ℄ : N = jfM :M = jfd1 : d1jIgj & 2jIgj37 non-squares noA000037 [I℄ : 9 N s.t. N = jfd : djIgj & 2jN40 primes at the beginning of the entury noA005180 [I℄ : 9 N s.t. N = jfd1 : d1jIgj & N = jfd2 : d2jNgj60 even square numbers noA016742 [I℄ : 9 N s.t. N = jfd : djIgj & 2jI & 2 6 jN65 odd primes together with one noA006005 [I℄ : 9 N s.t. N = jfd1 : d1jIgj& N = jfd2 : d2jNgj & 2 6 jI69 qp�1 where p and q are prime noA036454 [I℄ : 9 N s.t. N = jfd1 : d1jIgj& 2 = jfd2 : d2jNgj & 2 6 jN84 square numbers noA000290 [I℄ : 9 N s.t. N = jfd : djIgj & 2 6 jN101 harateristi funtion of prime numbers noA010051 [I;N ℄ : N = jfM :M = jfd1 : d1jIgj& 2 = jfd2 : d2jIgjgj102 non-primes noA018252 [I℄ : 2 6= jfd : djIgj141 powers of 2 noA000079 [I℄ : 1 = jfd1 : d1jI & 2jI & 2 = jfd2 : d2jd1gjgj169 omposite numbers noA002808 [I℄ : 9 N s.t. N = jfd1 : d1jIgj & N 6= jfd2 : d2jNgjTable 11.17 Fifteen lassially interesting onepts re-invented in one sessionThirdly, sequene A036454 omprises integers of the form qp�1 for primesp. In the Enylopedia there is a omment pointing out that these are integersfor whih �(�(n)) = 2 and we see that HR's de�nition is equivalent. Finally,powers of 2 are de�ned in suh a way that the sequene doesn't inlude1 = 20. However, in other sessions, HR does re-invent the sequene inluding1 by de�ning powers of two as those integers with exatly one odd divisor. Insummary, 15 lassially interesting onepts were produed in two minutesin this session, so nearly 10% of the onepts were lassially interestingonepts. We believe this is more than aeptable and is indiative of thehigh quality of the onepts HR produes in general.



11.5 Classially Interesting Results 219As mentioned above, HR has re-invented more than 120 integer sequenes.In the Enylopedia, 130 sequenes are assigned the \ore" keyword beausethey are fundamental to various domains. HR has re-invented 27 of these,whih is more than 20% of the ore onepts. This is another indiation thatHR onepts are of a high quality. The re-invented ore onepts are listedin Table 11.18. Around half of those in the list were produed in searhesinvolving �ne-tuning to �nd a partiular onept, but not neessarily the onelisted. That is, sometimes the same �ne-tuning produed more than one ofthem (see omments on �ne-tuning below). The �ne-tuning involved alteringthe evaluation funtion, restriting the prodution rules and the addition ofnew initial onepts. In partiular, odious numbers, evil numbers and oneptA000120, the number of ones in the binary representation of n required theinitial onept of deomposing an integer into its binary representation. Wedisuss this in [Colton et al. 00b℄, but disussion of it is beyond the sope ofthis book.A-Number De�nitionA000004 zero sequeneA000005 � (n) [number of divisors of n℄A000010 �(n) [number of primes � n and o-prime to n℄A000012 all onesA000027 natural numbersA000040 prime numbersA000069 odious numbersA000079 powers of 2A000120 number of ones in binary expansionA000204 �(n) [sum of divisors of n℄A000217 triangular numbersA000225 2n � 1A000290 square numbersA000578 ubesA000593 sum of odd divisors of nA000720 �(n) [number of primes � n℄A000961 prime powersA001065 sum of proper divisorsA001157 sum of squares of divisorsA001969 evil numbersA002379 proni numbers [of the form n(n + 1)℄A002808 omposite numbersA005100 de�ient numbersA005101 abundant numbersA005408 odd numbersA005843 even numbersA018252 non-primesTable 11.18 27 ore integer sequenes re-invented by HR



220 11. An Evaluation of HR's TheoriesFine-tuning the searh to �nd partiular onepts an often produe un-expeted and interesting results. In one session, we notied that HR hadre-invented the �-funtion, whih alulates the sum of the divisors of n.This was not expeted and so the de�nition was investigated:[I;N ℄ : N = jf(d; a) : djI & a � dgjIt takes a little thought to realise that the less-than-or-equal-to onept wasused e�etively to sum the divisors. The onstrution of this onept usedonly the size and ompose prodution rules, and only the onepts of divisorsand less than or equal to. We deided to restrit the searh to using only theseprodution rules, starting with only the two onepts mentioned. The �rst 10onepts produed are given in Table 11.19 and all of them were found in theEnylopedia, whih was partiularly interesting. None of the de�nitions forthe onepts are the standard ones, but this added to the appeal. We foundit partiularly interesting that square numbers, triangular numbers, �(n)2,Pni=1 �(i) and the �-funtion an all be de�ned very similarly.A-Number Conept/HR's de�nitionA000005 � (n) [number of divisors of n℄[I;N ℄ : N = jfd : djngjA000012 all ones[I;N ℄ : N = jfM : M = jfa : a � ngjgjA007425 inverse mobius transformation applied twie to the all 1s sequene[I;N ℄ : N = jf(d1; d2) : d1jI & d2jd1gjA035116 � (n)2[I;N ℄ : N = jf(d1; d2) : d1jI & d2jIgjA000203 �(n) [sum of divisors of n℄[I;N ℄ : N = jf(d; a) : djI & a � dgjA038040 � (n)� n[I;N ℄ : N = jf(d; a) : djI & a � IgjA006218 Pni=1 � (i)[I;N ℄ : N = jf(d; a) : a � I & djagjA000217 triangular numbers[I;N ℄ : N = jf(a; b) : a � I & b � agjA000290 square numbers[I;N ℄ : N = jf(a; b) : a � I & b � IgjA010553 � (� (n))[I;N ℄ : N = jf(M; d2) : M = jfd1 : d1jIgj & d2jMgjTable 11.19 Ten sequenes re-invented by HR using a �ne-tuned searhWhile HR re-invents many lassially interesting integer sequenes suhas prime powers, square free numbers, perfet numbers and repdigits,5 thereare some fundamental ones it has so far not re-invented. In partiular, HR5 See http://www.dai.ed.a.uk/~simono/researh/hr for details of their on-strution, and the omplete list of re-inventions.



11.6 Conlusions 221does not re-invent onepts involving the partition of integers. We hope thatthe path prodution rule (see x14.1.1) will help here. An alternative wouldbe to give HR the deomposition of integers into partitions as an initialonept. Similarly, HR does not re-invent the onept of prime signatures andagain the path rule should help, or the deomposition of an integer into itsprime signature ould be given as an initial deomposition, from whih manyinteresting onepts would probably follow. HR does re-invent the onept ofprime divisors and does notie that all integers greater than one are divisibleby a prime number, but without the onept of prime signatures, it is veryunlikely that it will notie the fundamental theorem of arithmeti.11.6 ConlusionsOver a million theory formation steps, taking in exess of 400 hours andproduing more than 1000 theories have been performed in 12 di�erent do-mains in order to assess the theories that HR produes. This has enabledus to provide evidene for the truth of the two hypotheses we stated in theintrodution: that HR's theories are interesting and that the heuristi searhan be used to improve the quality of the theories.To test the hypothesis that HR's theories are interesting:� Two theories were analysed and we onluded that, while the onjeturemaking in number theory was poor, the theories were interesting. In parti-ular, the theory of groups had many aspets worthy of further investigation,beause it used all the funtionality available to HR to produe theorems,proofs and ounterexamples, as well as onepts.� Various qualities of onepts were assessed by averaging the values overmany theories. We onluded that the level was aeptable for eah quality.� The average quality of the onjetures over many theories was assessed andwe onluded that the onjetures were less interesting than the onepts.We provided an explanation for this and pointed out that HR has moresophistiated onjetures making tehniques, one of whih is assessed in thenext hapter.� The lassially interesting results that HR has re-invented were examined.We onluded that, while the number of results in graph and group theory waslow, HR has re-invented some important results in both. In number theory,HR has re-invented more than 20% of the ore sequenes in the Enylopediaof Integer Sequenes and 10% of the onepts in the session we analysed werelassially interesting.



222 11. An Evaluation of HR's TheoriesTo test the hypothesis that the heuristi searh an be used to improvethe quality of the theories:� We showed that areful hoie of the weights for the evaluation funtion animprove the appliability and omprehensibility of onepts and the numberof onepts and ategorisations in the theory. While not all the heuristimeasures performed as well as expeted, we found that in most ases thosemeasures designed to improve the theory in a partiular way did so. We alsofound that in some ases, ertain measures work best if used in ombinationwith others and that ertain searh setups perform better for ertain tasks,although no setup outperformed the others aross the board. Table 11.20summarises the searh strategies whih should be used in order to maximiseertain qualities of theories, as well as the perentage inrease over the meanwhih an be expeted.� We showed that for the proof length and surprisingness of theorems, theheuristi measures were less e�etive and ould not be used to improve thetheory. We provided an explanation for this.� We analysed some possible pitfalls in using the heuristi searh and on-luded that the measures were aeptably robust, but the nature of theoriesdepended more on the domain than the searh strategy employed. We showedhow pruning an improve the quality of the theory, but a onit may reduethe overall quality with respet to a partiular measure.� We gave an example where �ne-tuning the searh produed very interestingresults: a high yield of seemingly disparate well known integer sequeneswhih were presented with very similar de�nitions.There are many aspets of HR's theories whih have not been examinedand many areas for improvement in both the design and evaluation of HR.In partiular, the way in whih HR makes onjetures needs many improve-ments, and we need to examine the lassially interesting onjetures HRre-disovers more thoroughly. However, we hope to have supplied enough ev-idene to show that HR's theories are interesting and that the heuristi searhis useful for improving theories. In the next hapter, further evidene for thequality of the theories is supplied by looking at how HR an make disoverieswhih are new to the user and sometimes new to mathematis.



11.6 Conlusions 223Quality Searh strategy Perentageto improve inreaseAppliability Appliability measure, weight 1 19%of onepts with searh setup 3Comprehensibility Breadth �rst searh, or alternatively, 25%of onepts appliability or omprehensibility,weighted 1Number of Novelty and produtivity measures 13%ategorisations weighted h 0.9, 0.1 i, searh setup 4Number of Comprehensibility and produtivity 36%onepts weighted h 0.5, 0.5 i or better: h 0.9, 0.1 i,searh setup 1Proof length Produtivity, weighted 1 30%of onjeturesSurprisingness Produtivity, weighted 1 12%of onjeturesProportion of Proof strategy 3 1%theoremsTable 11.20 Searh strategies for maximising qualities of theories





12. The Appliation of HR to Disovery Tasks
1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 2, 2, : : :A046951. f(n) = jf(a; b) : a� b = n & ajbgjOur main aims with HR have been to implement a plausible model of theoryformation and to experiment with various parameters in order to improve thequality of the theories it produes. However, we have also always had in mindthe possibility of using HR for disovery tasks in mathematis by inventingnew onepts and �nding new onjetures. Our methodology has been todesign and implement a model of theory formation before attempting anyappliations. Therefore, there has been less time to apply HR to disoverytasks and this has been a seondary aim of the projet.While running HR, there have been times when it has highlighted somefats about a domain whih were new to us and whih genuinely surprised us.The ability to surprise the user is a quality that Boden laims is imperativefor reative programs [Boden 92℄, [Boden 94℄. Boden also makes the distin-tion between results whih are new to the user and results whih are newto the domain. We wish to assess here whether usage of HR will in generallead to results whih are new to the user and possibly new to mathematis.In evidene that HR has been used to eliit new knowledge about a domain,we present three projets in x12.1 to x12.3. The �rst two projets took anafternoon eah to omplete, whereas the third projet was muh more ex-tended and is ongoing. To provide a balane, in x12.4, we also assess thefailures HR has had. Finally, we assess HR as a disovery program in termsof ertain riteria for the results of sienti� disovery programs set down in[Vald�es-P�erez 99℄, as disussed in x12.5.We have been surprised many times by the unusual way in whih HR hasde�ned well known onepts. For example in number theory, HR produedthe sequene of powers of 2: 1; 2; 4; 8; 16; : : :We were not expeting this to beoutput, beause the usual de�nition is reursive. However, HR de�ned theseas integers with exatly one odd divisor (namely the number 1). It is easyto prove that this is an equivalent de�nition to the usual one for powers of2. This de�nition also makes us think of powers of 2 as a member of a newfamily of sequenes. Ordinarily, we think of the powers of 2 as a sequene in



226 12. The Appliation of HR to Disovery Tasksthe following family: powers of 1 (the unit sequene), powers of 2, powers of3 and so on. However, we an instead think of them as the �rst sequene inthis family: numbers with one odd divisor, numbers with two odd divisorsand so on. Numbers with two odd divisors are those of the form 2np forn = 0; 1; 2; : : : and p prime (sequene A038850). The sequene of numberswith three odd divisors { numbers of the form 2np2 for primes p { is notfound in the Enylopedia.In graph theory, we have also been surprised that HR �nds ertain on-epts whih are usually de�ned reursively or with a visual avour. In par-tiular, we were not expeting HR to re-invent the onept of yles, but itde�ned these as onneted graphs where every node has weight 2. Similarly,we did not expet HR to re-invent the onept of star graphs, but HR de�nedthese as graphs with exatly one node whih is on every edge.For the projets given below, the user was the author. We present theresults whih were new to him and indiate whether any results are possiblynew to mathematis. There has been one other major user of HR, GrahamSteel, who used and extended HR for his masters projet entitled `CrossDomain Mathematial Conept Formation' [Steel 99℄, whih we disuss inx14.3.2. Steel found a result whih was new to him: HR invented the oneptof onneted graphs for whih there is a node of weight w for w = 1; 2; 3; : : : ; kfor some k. This led him to prove in [Steel 99℄ that for every n, it is possibleto onstrut a graph with n nodes whih has nodes of weight 1; 2; 3; : : : andn� 1. Steel reports in [Steel et al. 00℄ that although the onept was new tohim, these types of graph have appeared in the solution to a problem posedin [Zeitz 99℄ onerning a host shaking hands at a party.Some of the results presented here have been given as illustrative exam-ples in previous hapters, but we felt it informative to ollet all the resultstogether. Also, the proofs of the theorems presented in this hapter are givenin Appendix C, where we also prove some additional onjetures that wemade about the onepts HR invented.12.1 A Classi�ation ProblemWe have disussed in x3.2.1 how the desire to lassify a set of objets andrive theory formation. We implemented the invariane and disriminationmeasures so that HR an measure the worth of a onept in terms of how losethe ategorisation it produes is to a gold standard ategorisation provided bythe user. In algebrai domains suh as group theory, telling whether two grouptables are isomorphi is a well known lassi�ation problem and oneptsrelating to this task are often very interesting. For this reason, we deidedto see whether HR ould �nd a onept whih lassi�ed up to isomorphismthe groups up to order 6. From our knowledge of group theory, we knew thatone way to do this is to look at the set of element orders. HR annot �ndthe onept of element orders, but we hope this will be possible after the



12.1 A Classi�ation Problem 227introdution of a new prodution rule, whih we shall disuss in x14.1.1. Wehoped that HR would �nd a suitable onept whih did not need the orderof elements.We gave HR the set of eight groups up to order 6, eah supplied with twodi�erent but isomorphi group tables. To solve the problem, HR had to �nda onept whih sored 1 for both invariane and disrimination with respetto the isomorphi ategorisation whih we also supplied. Therefore, our �rstapproah to this problem was to de�ne a heuristi searh with the invari-ane and disrimination measures equally weighted and all other measuresweighted zero. We ran HR until it found a onept ahieving the gold standardlassi�ation. After 1932 theory formation steps, HR found this ompliatedonept whih solved the problem for the groups in HR's database:[G;N;M;O℄: O = jfa 2 G :M = jfb 2 G : N = jf : a � b = gj & b � b = agjgjHaving looked at the data for this onept, we notied that the value for Nwas always 1 and it was obvious from the de�nition that this was always true.This enabled us to simplify the de�nition for the onept, writing it as thisfuntion:f(G) = f(M;O) : O = jfa 2 G :M = jfb 2 G : b � b = agjgjIn English, the onept that HR found to lassify the groups an be expressedas a funtion taking a group G whih alulates the set of pairs of numbers(M;O) where O is the number of elements x, for whih M is the number oftimes x appears on the diagonal of G's multipliation table (andM is greaterthan 0, for reasons given in x6.5.1).We did not attempt to prove that this onept lassi�ed all groups upto order 6 beause the solution was ompliated and we wanted to see ifthere was a simpler solution.1 Having studied the way in whih HR formedthe theory, we notied a aw in the heuristi searh: HR went down thewrong paths from the start and did not properly reover. This is beause theinitial onepts whih sore higher than any other atually sore very low forinvariane and disrimination. However, beause they are the best available,they are developed and HR never returns to develop other onepts whihmay eventually lead to better solutions.This problem suggests only using the invariane and disrimination mea-sures to enourage onepts if they sore over a given threshold. Unfortu-nately, HR does not have suh a mehanism, but one way to approximateit is to allow HR to develop a range of onepts before turning on the mea-sures. To do this, we ran HR with all measures turned o� exept the noveltymeasure, to enourage a wide overage of the domain. We asked HR to �nd1 The onept worked for the groups in HR's database, but this is no guaranteethat it will work for any groups up to order 6.



228 12. The Appliation of HR to Disovery Tasks50 di�erent ategorisations and then we turned on the invariane and dis-rimination measures as above, turning o� the novelty measure at the sametime. This tehnique led to an answer after only 772 theory formation steps.Furthermore, HR found a di�erent onept whih ahieved the required at-egorisation:[G;N ℄ : N = jf(a; b) 2 G2 : 9  (a � b = ) & 9 d (b � a = d & b � d = a)gjThis de�nition is still more ompliated than it needs to be. In partiular,the introdution of element  is superuous beause for every pair of elementsa and b, there is an element  for whih a � b = . With this in mind, we wereable to simplify the de�nition further, again writing it as a funtion:f(G) = jf(a; b) 2 G2 : 9 d (b � a = d & b � d = a)gj= jf(a; b) 2 G2 : b � (b � a) = agj= jf(a; b) 2 G2 : (b � b) � a = agj= jf(a; b) 2 G2 : b � b = idgj= jf(a; b) 2 G2 : b = b�1gj= jGjjfb 2 G : b = b�1gj (12.1)This funtion alulates the number of self inverse elements and multipliesit by the size of the group. This solution ame as a surprise as we had notexpeted a onept with suh a simple de�nition to ahieve our aims. Totest the utility of the invariane and disrimination measures, we ran thetest again, this time keeping the novelty measure on and never turning theinvariane or disrimination measures on. HR took 1230 theory formationsteps to �nd the answer it had previously found in just 772 steps.This onept is invariant under isomorphism in general beause the num-ber of elements and the number of self inverse elements will not hange.Furthermore, the groups up to order 6 all return a di�erent value for thisonept: f(C1) = 1 f(C2) = 4 f(C3) = 3 f(C4) = 8f(C2� C2) = 16 f(C5) = 5 f(C6) = 12 f(S3) = 24Hene we see that the funtion does indeed lassify the groups up to order 6up to isomorphism. Unfortunately the lassifying power of this funtion doesnot extend to groups of higher order. There are two non-isomorphi groupsof order 8, namely Q8 and D(4) for whih f(Q8) = f(D(4)) = 16.We were still not entirely satis�ed beause, while HR had produed a goodonept, the de�nition it supplied was overly ompliated. We wanted to knowwhether HR ould �nd a simpler de�nition. Beause we were now aware that



12.1 A Classi�ation Problem 229a simple answer existed, we ran an exhaustive, breadth �rst searh until HRprodued an answer. After only 349 theory formation steps, HR found thisonept: [G;N ℄ : N = jf(a; b; ) 2 G3 : a � b =  & a �  = bgjA little manipulation of this de�nition shows that it alulates the samefuntion as (12.1). The omplexity of this onept { as de�ned in x9.3.1 { isjust 3 and it is learly less ompliated than the previous answer.This projet has been both a suess and a failure for HR. HR ertainlyfound a funtion whih solved the problem we set and was new and surprisingto us, although it is unlikely that it is new to group theory. HR eventuallysupplied a de�nition for this onept whih was simple enough for us to un-derstand quikly. Also, the use of the invariane and disrimination measuresafter the novelty measure improved eÆieny, bringing the number of stepsrequired to �nd a solution down from 1230 to 772, a redution of 37%. Thisshows that the invariane and disrimination measures an be used to im-prove the searh for onepts ahieving partiular ategorisations.However, the exhaustive searh performed better than any heuristisearh, beause there is a simple solution. More worryingly, the searh us-ing just the invariane and disrimination measures performed worst ofall. This suggests that the invariane and disrimination measures maynot be well suited for this task. We have explored this problem further in[Colton et al. 00b℄, where we experimented with HR learning de�nitions forinteger sequenes. We found that for integer sequenes like prime numbers,there is no disernible gradient using these measures. That is, the oneptsfrom whih the goal onept is built often sore badly using the invarianeand disrimination measures, making it diÆult to synthesize an answer. Forexample, when learning the onept of prime numbers, it is �rst neessary toonstrut the � funtion (number of divisors). However, this onept does notsore highly enough for invariane, beause it lassi�es many pairs of non-primes as di�erent, when they should all be lassi�ed the same. HR developsother onepts �rst beause they sore more for the invariane measure.We have seen that HR an �nd results whih are new to us and whih ansurprise us. Unfortunately, it does not show that a heuristi searh is usefulfor �nding onepts ahieving partiular ategorisations. However, we havestated throughout that the appliation of HR to suh ategorisation tasksis beyond the sope of this book. To enable HR to e�etively learn integersequenes, we implemented a look ahead mehanism, whih performed verywell. We report this tehnique in [Colton et al. 00b℄, but disussion of it isalso beyond the sope of this book.



230 12. The Appliation of HR to Disovery Tasks12.2 Exploration of an Algebrai SystemWe wanted to use HR in a domain whih was ompletely new to us and see ifthe theory it produed held any surprising results. Firstly, as we mentioned inx8.2.5, when we used HR in TS-quasigroup theory { ommutative quasigroupsfor whih 8 a; b a � (a � b) = b { HR found a set of prime impliates whihinterested us: a � b = ) a �  = ba � b = ) b � a = a � b = ) b �  = aa � b = )  � a = ba � b = )  � b = aThese were interesting beause they state that if a � b =  then any pairof a; b and  in any order multiply to give the third. Upon reading aboutTS-quasigroups later, we realised that these theorems atually omprise analternative axiomatisation of TS-quasigroups. HR annot prove the equiva-lene of the axiomatisations, but we intend to implement suh funtionality.As TS-quasigroups have already been developed in mathematis and wewere aware of some results in quasigroup theory, we deided not to explorethat theory further. Rather, we deided to use HR to explore `anti-assoiative'algebras whih have only one axiom: that no triple of elements are assoiative,i.e. 8 a; b;  (a�b)� 6= a�(b�). We are not aware of any work in this domain,whih is di�erent to non-assoiative algebras, where the only ondition is thatone triple of elements is not assoiative. In anti-assoiative algebras, all triplesmust be non-assoiative.We ran HR with the default algebra settings for 1000 theory formationsteps. This took 2 34 hours. We �rst notied that HR had found 34 examplesof anti-assoiative algebras from size 2 to 6, inluding these two of size 6:� 0 1 2 3 4 50 1 5 5 1 0 11 4 2 2 4 2 22 3 3 0 3 0 33 4 2 2 4 2 24 1 5 5 1 5 15 3 3 0 3 0 3
� 0 1 2 3 4 50 1 3 5 0 5 21 4 2 3 2 0 22 3 1 0 0 0 03 3 4 5 0 5 14 3 1 3 0 0 05 3 5 2 0 0 0As it was not obvious to us that there would be any examples of this typeof algebra, it was interesting that relatively large examples existed. Con-versely, it was also interesting that examples of size 2 existed, beause theanti-assoiative axiom appears to be fairly onstraining. These two isomor-phi examples were found by HR:� 0 10 1 11 0 0 � 0 10 1 01 1 0



12.2 Exploration of an Algebrai System 231There were no examples of anti-assoiative algebras of size 1 or 5. Inthe �rst ase, it is easy to see that the trivial algebra annot have the anti-assoiative property and HR atually onjetures and proves this. We havesubsequently used MACE to �nd an example of size 5 and we now know thatthere are examples of all sizes greater than 1: multipliation tables where the�rst olumn ontains all ones and the other olumns all ontain zeros havethe anti-assoiativity property. For example, this multipliation table of size5 is anti-assoiative: � 0 1 2 3 40 1 0 0 0 01 1 0 0 0 02 1 0 0 0 03 1 0 0 0 04 1 0 0 0 0We onjetured that all multipliation tables of this type are anti-assoiative after looking at the examples found by HR (HR did not pro-vide the onjeture expliitly). The onjeture is true, proved by the fol-lowing ase split: If  = 0 then 8 a; b (a � b) �  = 1, but (b � ) = 1, soa � (b � ) = 0 6= (a � b) � . If  6= 0 then 8 a; b (a � b) �  = 0, but (b � ) = 0,so a � (b � ) = 1 6= (a � b) � .To further investigate the theory, we wished to �nd out what propertiesthe total lak of assoiativity rules out. For example, it is obvious that groups(whih are assoiative) do not have the anti-assoiative property and wewanted to �nd some results of this nature whih were less obvious. Therewere 240 theorems in the theory (all proved by Otter) and we listed them interms of dereasing proof length. We �rst observed theorem 168:� a s.t. 8 b (b � b = a)This states that there must be at least two di�erent elements on the diagonalline of the multipliation table. This is not true of many algebrai systems,inluding for instane, quasigroups.Next, we notied theorem 154:6 8 a; b ((9  s.t. a �  = b) & (9 d s.t. d � a = b))This states that these algebras annot be quasigroups. This was ertainly notobvious to us. It also means at least one triple of elements in quasigroups mustbe assoiative, a fat we were not aware of. Furthermore, theorem 47 was astronger result about the non-quasigroup nature of anti-assoiative algebras:� a s.t. (8  (9 d ( � d = a) & 9 e (e � a = )))This states that if the nth row has all the elements in it, then the nth olumnwill not have all the elements in it (and vie versa).



232 12. The Appliation of HR to Disovery TasksFollowing this, we notied theorem 12:�a s.t. a � a = a;This states that there are no idempotent elements. This was not surprisingto us beause if an element a is idempotent, then the triple (a; a; a) will beassoiative.We also notied theorems 138 and 139:� a s.t. 8  (a �  = )� a s.t. 8  ( � a = )These state that there an be no global left or right identities. Therefore,there an be no identity element, as there is in a group. Again, this was notsurprising to us, but upon looking at the prime impliates that HR found,we notied a stronger ondition about identities whih was not obvious:8 a; b a � b = a) b � a 6= aThis states that if b is a right identity of a, then it annot be a left identityof a, hene no element has a loal identity.Furthermore, we notied two slightly surprising prime impliates in thistheory:8 a; b;  (a � a = b &  �  = a)  �  6= b) (12.2)8 a; b;  (a � b =  & b � a = ) a � a 6= b) (12.3)After a little rearranging of 12.2, we an state it as: 8 a; (a�a)�(a�a) 6= (a�a)and we see that it is just a speial ase of the theorem that no element isidempotent, so it is less surprising than we thought. We have inluded (12.2)here as an indiation of the uninteresting results HR produed. In ontrast,theorem 12.3 shows that if two elements ommute, neither will be the squareof the other, whih was not obvious.Disappointingly, in this session, HR did not invent the onept of Abelian-ness. We notied that HR initially found the onept of ommutative pairsinteresting and developed it by ombining it with other onepts. However,after this initial development, the interestingness rating had dropped be-ause the theorems produed were relatively easy to prove, and ommutativepairs were not developed again. After the session, we used HR to explore thedomain ourselves, by foring partiular theory formation steps. When we at-tempted to invent the onept of Abelian anti-assoiative algebras, HR madeand proved the onjeture that none exist. Finally, using the forall produ-tion rule, we tried to invent the onept of entral elements (i.e. those whihommute with all the others). Again, HR proved that no suh elements existsin anti-assoiative algebras, hene they annot even have a entre. While HR



12.3 Invention of Integer Sequenes 233did not tell us this diretly, it was very easy to use HR to explore the theoryourselves (although this was not a main aim of the projet).To summarise the main �ndings in this session, HR showed us that anti-assoiative algebras annot be quasigroups and they annot be Abelian oridempotent or have an identity element. HR also made stronger onjeturesabout the non-quasigroup, non-Abelian, non-idempotent and non-identitynature of these algebras. HR also highlighted some properties whih may helpidentify algebras of this type, for example that there must be at least twodi�erent elements on the diagonal of the multipliation table and that if twoelements ommute, neither will be the square of the other. We also disoveredthat there are examples of this algebrai system of every size greater than1 (but not one of size 1). All of these fats were unknown to us before thesession and we hope to have shown that HR an be used for a preliminaryinvestigation of a domain.12.3 Invention of Integer SequenesHR produes thousands of de�nitions in group theory, graph theory and num-ber theory. In general, if HR invents a onept whih is new to us, it is verydiÆult to determine whether it is new to mathematis. However, as disussedin x2.7, there is an Enylopedia of over 60,000 integer sequenes [Sloane 00℄whih have been olleted over 35 years by Neil Sloane, with ontributionsfrom many mathematiians. Due to the size and the overage of the Eny-lopedia, if HR invents a onept in number theory whih is missing fromthe Enylopedia, this inreases the hane that the sequene is a genuineinvention. However, as we shall see in x12.3.2, there is no guarantee that aonept missing from the Enylopedia is indeed new to mathematis. Thataside, the aim of the projet disussed in this setion was to use HR to inventinteresting new sequenes whih are missing from the Enylopedia. A dis-ussion of this projet has appeared as [Colton et al. 00℄. Also, some of themathematial results from the investigation have appeared in a mathematisjournal [Colton 99℄.12.3.1 Additions to the EnylopediaMany of HR's inventions are missing from the Enylopedia. Our poliy hasbeen to only submit a sequene to the Enylopedia if HR also �nds someinteresting onjetures about it whih we an prove. We have used the inventand investigate tehnique disussed in x7.5 to �nd 20 new sequenes and ev-ery sequene we have submitted to the Enylopedia has been aepted. Itmust be said that the aeptane rate for sequenes is fairly high in general,although the exat rate is not known. However, there have been many o-



234 12. The Appliation of HR to Disovery Tasksasions when Neil Sloane2 has rejeted ertain sequenes, giving justi�ationfor his deision on the `sequene-fan' mailing list.The list of sequenes invented by HR whih are now in the Enylopedia isgiven in Table 12.1. Eah sequene is given a unique `A'-number to identifyit, and we present them in order of the A-number. This roughly equatesto the order in whih we submitted them to the Enylopedia, with theexeption that the �rst one, sequene A009087 was submitted later than thislow number would suggest. This was given a smaller A-number beause NeilSloane wished to �ll in a gap in the Enylopedia.There are some things to note about these sequenes. Firstly, sequeneA052147 was not introdued using the invent and investigate proess, but wasthe result of a mahine learning task we shall disuss in x14.2.3. Seondly, HRused the reord-sequene transformation when presenting onepts as integersequenes. This transformation takes a funtion suh as the � -funtion anddetermines whih integers set a reord for it, i.e. those where the output isstritly bigger than the output for all smaller numbers. With the � -funtion,this results in the onept of highly omposite numbers, whih have moredivisors than any smaller number. The transformation is standard in numbertheory and in the latest Java version of HR, it is implemented as a fullprodution rule.Also, sequene A009087 { numbers with a prime number of divisors { ismentioned briey in [Lenat 76℄. It is given as an analogous onept to one thatAM invents and it is not lear whether AM invented this or not, espeiallyas another analogous onept given is semigroups (whih AM ertainly didnot re-invent). Also, when the same example is given in Lenat's later versionof his thesis, [Lenat 82℄, the omment about integers with a prime numberof divisors is removed. Furthermore, as we report in x13.1.5 this onept isnot seen in the output of any of AM's sessions. It is ertainly possible thatLenat thought of the onept himself and put it there to add interest { helater talks about Mersenne primes as if AM re-invented them, but there isno evidene that it did.As mentioned above, our poliy has been to only submit sequenes to theEnylopedia if HR also �nds some interesting onjetures about them whihwe an prove. We have not followed this poliy rigidly, and there are a fewexeptions to the rule. In partiular, some sequenes related to refatorablenumbers were submitted without interesting onjetures about them expli-itly. The reasons for this are given in x12.3.2. Also, sequenes A036431 andA036432 were submitted before we enabled HR to data-mine the Enylo-pedia to �nd onjetures. These sequenes were originally submitted as theyhad simple de�nitions and looked interesting. However, neither HR nor our-selves have found any interesting onjetures about these sequenes. Similarly,we have found no interesting onjetures about sequene A038378. However,2 Who, until reently was the only person who deided whether a sequene wasallowed into the Enylopedia { there is now a team of people who work on this.



12.3 Invention of Integer Sequenes 235A-Number De�nition and SequeneA009087 Integers with a prime number of divisors.2, 3, 4, 5, 7, 9, 11, 13, 16, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, : : :A033950 Refatorable numbers { the number of divisors is itself a divisor.1, 2, 8, 9, 12, 18, 24, 36, 40, 56, 60, 72, 80, 84, 88, 96, : : :A036431 f(n) = jfm : m+ � (m) = ngj0, 1, 0, 1, 1, 0, 2, 0, 1, 1, 0, 2, 1, 1, 1, 0, 0, 2, 2, 0, 2, 0, 0, 1, 2, : : :A036432 Integers setting a reord for f(n) above.1, 2, 7, 38, 122, 2766, 64686, 1972296, 5387768, 56208248, : : :A036433 Integers where the number of divisors is a digit.1, 2, 14, 23, 29, 34, 46, 63, 68, 74, 76, 78, 88, 94, 116, 127, 128, : : :A036434 Integers whih annot be written as k + � (k) for some k.1, 3, 6, 8, 11, 16, 17, 20, 22, 23, 27, 29, 35, 36, 40, 41, 44, 46, : : :A036435 Integers where all digits are non-zero square numbers.1, 4, 9, 11, 14, 19, 41, 44, 49, 91, 94, 99, 111, 114, 119, : : :A036436 Integers where � (n) is a square number.1, 6, 8, 10, 14, 15, 21, 22, 26, 27, 33, 34, 35, 36, 38, 39, 46, 51, : : :A036438 Integers expressible as m� � (m) for some m.1, 4, 6, 10, 12, 14, 22, 24, 26, 27, 32, 34, 38, 40, 46, 56, 58, 60, : : :A036896 Odd refatorable numbers.1, 9, 225, 441, 625, 1089, 1521, 2025, 2601, 3249, 4761, 5625, : : :A036897 Square root of odd refatorable numbers.1, 3, 15, 21, 25, 33, 39, 45, 51, 57, 69, 75, 81, 87, 93, 111, 123, : : :A036907 Square refatorable numbers.1, 9, 36, 225, 441, 625, 1089, 1521, 2025, 2601, 3249, 3600, : : :A038378 Positive integers with more distint digits than anysmaller positive integer.1, 10, 102, 1023, 10234, 102345, 1023456, 10234567, 102345678, : : :A039819 Number of divisors of the refatorable numbers.1, 2, 4, 3, 6, 6, 8, 9, 8, 8, 12, 12, 10, 12, 8, 12, 8, 12, 8, 12, 8, 8, : : :A046951 g(n) = jf(a; b) : a� b = n & ajbgj(Also the number of squares dividing n).1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 2, 2, : : :A046952 Integers setting a reord for g(n) above.1, 4, 16, 36, 144, 576, 1296, 2304, 3600, 14400, 32400, : : :A047983 h(n) = jfa < m : � (a) = � (n)gj0, 0, 1, 0, 2, 0, 3, 1, 1, 2, 4, 0, 5, 3, 4, 0, 6, 1, 7, 2, 5, 6, 8, : : :A049439 Integers where the number of odd divisors is an odd divisor.1, 2, 4, 8, 9, 16, 18, 32, 36, 64, 72, 128, 144, 225, 256, 288, 441, : : :A052147 Primes + 2.4, 5, 7, 9, 13, 15, 19, 21, 25, 31, 33, 39, 43, 45, 49, 55, 61, 63, : : :A057265 Even refatorable numbers.2, 8, 12, 18, 24, 36, 40, 56, 60, 72, 80, 84, 88, 96, 104, 108, : : :A057303 Integers where the number of distint digits is a digit (base 10).1, 11, 12, 20, 21, 23, 24, 25, 26, 27, 28, 29, 32, 42, 52, 62, 72, : : :Table 12.1 Integer sequenes invented by HR



236 12. The Appliation of HR to Disovery Taskswhile HR did invent this sequene, we did not submit it { we mentioned thesequene in [Colton 99℄ and Neil Sloane entered it into the Enylopedia.In general, if HR found a relation between the sequene it had inventedand a sequene submitted by someone else, and we ould prove that therelation held, we submitted the new sequene. Sometimes the relationshipswere very easy to prove. To start with, HR notied that sequenes A034843and A045708, integers where the number of divisors is the �rst digit andprimes with �rst digit 2 respetively are both subsequenes of HR's sequeneA036433, integers where the number of divisors is a digit. These fats wereobvious and required no proof. HR also notied that multiples of 12 neverhave this property. We originally thought this must be false, and it took ussome time to realise why this is true: 12 has six divisors, whih isn't a digit of12, 24 has eight divisors, whih isn't a digit and 36 has nine divisors, whihisn't a digit. After this, every multiple of 12 has more than 10 divisors, henethe number of divisors annot be a digit.HR also pointed out that sequene A006512, the greater of twin primes,was disjoint with its sequene A036434, integers whih annot be written ask + �(k) for some k. This was easy to prove, as was the fat that HR's se-quene A036435, integers whih have only non-zero square numbers as digitsis a supersequene of the repunit integers (all the digits are ones, sequeneA000042). Also, HR made the onjeture that sequene A001747 { primes �2{ are a subsequene of its sequene A036438, integers whih are expressibleas m� �(m) for some m, and again the onjeture was obviously true. Whilethese theorems are simple enough to present here without proof, they didadd interest to the sequenes that HR produes and in most ases we hadnot antiipated the result before HR provided it.When asked for subsequenes for its sequene A049439 { integers wherethe number of odd divisors is itself an odd divisor { HR identi�ed that thepowers of two have this property. This is beause powers of 2 have exatlyone odd divisor, the number 1, and obviously, 1 is an odd divisor of everypower of 2. Also, when we asked HR for subsequenes of its sequene A036436,integers where �(n) is a square number, it pointed out that the ubes of primes(A030078) are a subsequene. Cubes of primes must have four divisors, byTheorem 273 of [Hardy & Wright 38℄, hene HR's onjeture was orret.HR also onjetured that multipliative perfet numbers (A007422) are asubsequene of A036436. Multipliatively perfet numbers are those for whihthe produt of the divisors of n equals n2. Due to the di�erent nature of thetwo de�nitions, we thought this onjeture might turn out to be false. After alittle thought however, we realised that multipliative perfet numbers musteither have one or four divisors and therefore a square number of divisors asHR had predited.Perhaps the most appealing onjeture arose when HR notied that se-quene A009087, integers with a prime number of divisors, was a superse-quene of sequene A023194, integers where the sum of divisors is prime. We



12.3 Invention of Integer Sequenes 237have already disussed this example in x7.5.4. This onjeture, that if the sumof divisors of an integer is prime, then the number of divisors must be prime,was ertainly not obvious to us. We prove this onjeture in xC.2 as a orol-lary to a more general result. We asked the \seqfan" and \NUMBTHRY"mailing lists of number theorists for referenes to this or a similar onjetureand have looked in the literature for a referene, but have found nothing yet.At present, we believe this to be a new onjeture found for the �rst time byHR.The remainder of the onjetures about the sequenes HR inventedare given in the two following setions on refatorable numbers (sequeneA033950) and sequene A046951. We also used the data-mining aspet ofHR to highlight onjetures about well known integer sequenes not inventedby HR. Firstly, HR notied a result about perfet numbers whih we givein x12.3.2 as it links perfet and refatorable numbers. Also, HR made theonjeture that perfet numbers an be written as �(a)(�(a) � a) for somea, where �(a) is the number of integers less than or equal to a whih areo-prime to it and �(a) is the sum of the divisors of a. We prove this resultin Appendix C.12.3.2 Refatorable NumbersEarly on in the HR projet, in one of the �rst sessions in number theory, HRprodued the following sequene of integers:1; 2; 8; 9; 12; 18; 24; 36; 40; 56; 60; 72; 80; 84; 88; 96; : : :The sequene looked interesting beause it had a mixture of odd and evennumbers and was niely spread over the numbers 1 to 100. We entered thesenumbers into the Enylopedia and were surprised that there was no orre-sponding sequene. At this stage, we had not looked at the de�nition of thesequene and assumed it would be fairly ompliated beause the sequenewas missing from the Enylopedia. We were more surprised to �nd that thesequene had a very simple de�nition: these are numbers for whih the num-ber of divisors is itself a divisor. For example, 9 has 3 divisors and 3 is itselfa divisor of 9, so 9 is refatorable. However, 10 has 4 divisors and 4 is notitself a divisor of 10, so 10 is not refatorable.Some months later, when we started the projet to �nd interesting integersequenes missing from the Enylopedia, we looked again at the sequene.Firstly, they were given the name \refatorable numbers" [Walsh 98℄ andwe made and proved the onjeture that all odd refatorable numbers aresquare numbers (see the proof of this and all subsequent onjetures aboutrefatorables in Appendix C). We have reently looked bak at the outputfrom HR for this seond investigation of refatorable numbers and have foundthat it also made the onjeture about odd refatorables, although we origi-nally overlooked the onjeture in favour of a more diÆult onjeture whih



238 12. The Appliation of HR to Disovery Tasksturned out to be false, see xC.1.2. Next, we submitted the sequene to theEnylopedia and they were given number A033950 and the keyword \nie"due to their simple de�nition. This was the �rst sequene HR invented whihwas added to the Enylopedia.After we had implemented the ability to data-mine the Enylopedia, our�rst major appliation was to �nd some onjetures about the refatorablenumbers. HR found three whih were surprising:� HR notied that integers ongruent to 0; 1; 2 or 4 mod 8 are a supersequeneof the refatorable numbers, leading to the onjeture that refatorable num-bers are only ongruent to 0; 1; 2 or 4 mod 8.� Perfet numbers are those for whih the sum of divisors is twie the number.HR notied that perfet numbers were disjoint with refatorables, leading tothe onjeture that perfet numbers are not refatorable.� By �nding sequene A002301 as a subsequene of the refatorables, HRonjetured that integers of the form n!=3 are refatorable for n > 2. Wehave yet to settle this onjeture.By identifying that perfet numbers were a subsequene of sequeneA009242 and refatorable numbers were a subsequene of sequene A009320,HR also highlighted an appealing similarity between refatorable numbersand perfet numbers:� Refatorable numbers are of the form lm(a; �(a)) for some a.� Perfet numbers are of the form lm(a; �(a)) for some a.(Where �(a) is the number of divisors of a and �(a) is the sum of the divisorsof a). We proved these onjetures and some of our own, and these resultsappeared as a paper in the Journal of Integer Sequenes [Colton 99℄. SeeAppendix C for the proofs. We were enouraged to submit any sequeneappearing in the paper to the Enylopedia whih is why some of them havebeen submitted without any interesting onjetures about them expliitly.This paper has attrated some attention from the mathematial ommu-nity. As disussed in xC.1.4 David Wilson has performed some alulationsto extend the distribution table of refatorables and has also made a on-jeture about prime fators relating to triples of onseutive refatorables(see xC.1.4). Also, various sequenes of integers based on and assoiated withthe refatorables have been added to the Enylopedia. Some sequenes wereentered by myself when refatorables were originally de�ned in [Colton 99℄.Also, the mathematiian Labos Elemer has taken an interest in refatorables,and has added sequenes whih are either speialisations of refatorables, sim-ilarly de�ned to refatorables or are related in some other way.In Table 12.2 we list the sequenes whih appear in the Enylopedia witha link to the refatorable numbers, along with the author of the sequene.



12.3 Invention of Integer Sequenes 239Along with ourselves and Labos Elemer, four other people have entered se-quenes linked to the refatorables, namely Neil Sloane, Erih Friedman,Asher Auel and Robert Wilson. Note also that HR invents the onept ofpairs of onseutive refatorables, and the onept of their produt (sequenesA036898 and A036899 in Table 12.2), but we invented these onepts beforewe saw them in HR's output, so we annot laim this as an original inventionby HR.Number Desription AuthorA034884 n < � (n)2 FriedmanA035033 n � � (n)2 FriedmanA036761 The number of refatorable integers of binary order ElemerA036762 The integer values of x=�(x) in order of Elemermagnitude of x in A033950A036763 x�(m) = m has no solution for x ElemerA036764 If q(m) = m=� (m) is an integer, then sequene gives thesmallest values of m for a given q ElemerA036878 Integers of the form pp � 1 (whih must be refatorable) ColtonA036879 A way of generating refatorables ColtonA036898 Pairs of onseutive refatorable numbers ColtonA036899 Produt of pairs of onseutive refatorables ColtonA046525 Numbers ommon to A033950 and A034884 ElemerA046526 Numbers ommon to A033950 and A035033 ElemerA046754 Square of � (n) divides n ElemerA046755 � (n)3 divides n ElemerA046756 � (n)4 divides n ElemerA047727 Average divisor is an integer and number is refatorable ElemerA047728 Multiply perfet, refatorable numbers with integer Elemeraverage divisor dividing the numberA048166 n is divisible by the number of unitary divisors of n ElemerA051278 n = k=�(k) has a unique solution SloaneA051279 n = k=�(k) has exatly 2 solutions SloaneA051280 n = k=�(k) has exatly 3 solutions SloaneA051346 n = k=�(k) in four or more ways D.WilsonA054010 n is divisible by the number of its proper divisors AuelA055678 Integers not ongruent to 0 (mod 6) that are divisible R.Wilsonby the number of their divisorsA055981 a(n) = Ceiling[n!=�(n!)℄ ElemerTable 12.2 Sequenes related to the refatorable numbersAs a prologue to this projet, on 23rd Marh 1999 we were ontatedby Robert Kennedy and Curtis Cooper, two mathematiians from CentralMissouri State University, who had read the paper on refatorable numbers.They pointed out that refatorables had already been de�ned by them in theirpaper entitled \Tau Numbers, Natural Density, and Hardy and Wright's The-orem 437", [Kennedy & Cooper 90℄. They alled these numbers \tau num-bers", but the index of the Enylopedia of Integer Sequenes gives prefer-ene to the name refatorable, presumably beause the word \tau" is already



240 12. The Appliation of HR to Disovery Tasksoverloaded. We follow the Enylopedia's lead and ontinue to use the namerefatorable.It is interesting that Kennedy and Cooper's paper was written as reentlyas 1990, and beause the sequene and related ones were missing from theEnylopedia, HR's redisovery of this onept was genuine. Also, HR madesome onjetures whih were not in Kennedy and Cooper's paper. Their paperproved a deeper result than those onjetured by HR, that refatorable num-bers have natural density zero. We wrote an addenda to [Colton 99℄ whihredited Kennedy and Cooper with the invention of refatorable numbers andargued that this did not detrat from the paper or from the suess of HR.12.3.3 Sequene A046951In the addenda desribed above, we wanted to emphasise the fat that HRprodued interesting onjetures in number theory, so we looked at HR'soutput one more. We found a new sequene produed by the funtion:g(n) = jf(a; b) : a� b = n & ajbgj (12.4)whih was interesting beause it is similar to the well known � funtion, whihounts the number of divisors of n. HR had also output the onept alulat-ing the reord sequene for this funtion (as desribed on page 234 above).These two sequenes have been subsequently added to the Enylopedia asA046951 and A046952. Using the Enylopedia, HR onjetured that thissequene ontained only square numbers (whih we had notied ourselvesanyway { see Table 12.1). We took this onjeture further and found thatthe reord funtion was in fat the square of the sequene of highly om-posite numbers (A002182). The proof of this was given in the addenda to[Colton 99℄ and we repeat it in Appendix C. While proving this onjeturewe disovered that another way of de�ning funtion 12.4 is as the number ofsquares dividing n.Sequene A046951 has attrated some attention from mathematiian La-bos Elemer who has developed some similar sequenes. Also, Christian Bowerhas pointed out some links between this sequene and others in the Eny-lopedia. The mathematis involved is beyond the sope of this book andwe reommend onsultation of [Sloane 00℄. It is very interesting to note thatthis sequene, whih originated in number theory, has been linked to se-quene A038538, the number of semi-simple rings with n elements. This isdue to the fat that the values in A038538 only depend on the prime signa-ture of n. There also appears to be a deep onnetion between the sequeneand Euler's transformation [Sloane & Bernstein 95℄. In partiular, applyingthe Euler transformation to sequene A046951 produes sequene A004101whih ounts the number of partitions of a partiular kind (as pointed out byChristian Bower). In Table 12.3 we give those sequenes in the Enylopediawhih have been linked to HR's sequene A046951, along with the authorsof the sequenes.



12.4 Disovery Task Failures 241Number DesriptionA004101 Partitions of the form a1 � b21 + a2 � b22 + : : : BowerA038538 Semisimple rings with n elements DominiiA052304 Number of squares dividing n by prime signature BowerA055076 Multipliity of MaxfGCD[d; n=d℄g when d Elemerruns over divisors of nA055993 Number of square divisors of n! ElemerA056061 Number of square divisors of entral binomial ElemeroeÆientsA056595 Number of non-square divisors of n ElemerA056596 Number of non-square divisors of n! ElemerA056623 Largest unitary square divisor of n ElemerA056624 Number of unitary square divisors of n ElemerA056626 Number of non-unitary square divisors of n ElemerA056629 Number of unitary square divisors of n! ElemerA056630 Number of non-unitary square divisors of n! ElemerTable 12.3 Sequenes related to sequene A04695112.4 Disovery Task FailuresSo far, we have only portrayed HR's suesses. However, in order to assess thehypothesis that HR an be used to �nd results new to the user and possiblynew to mathematis, we must also disuss times when disovery tasks havefailed.When data-mining the Enylopedia, there have been many oasionswhen we originally thought a onjeture was false, but it turned out to betrue after a little thought. While the time it takes us to realise the truth ofthe onjetures reets more on our mathematial ability than anything else,it does indiate that HR is able to regularly �nd results whih keep the userinterested. However, there have also been times when HR's onjetures haveturned out to be false. For example, when looking for sequenes disjoint withHR's sequene A036433 { integers where the numbers of divisors is a digit {HR onjetured that multiples of 10 never have this property. After failing toprove this onjeture for some time, we realised that 10p will have 8 divisorsif p is prime. Therefore, we looked for a prime number with 8 as a digit. Thisprovided us with a ounterexample: 830, whih has 8 divisors, whih is alsoa digit. It is diÆult to lass this as a omplete failure beause it held ourattention for some time, whih is a good property of an open onjeture. Inthe same session, HR made an equivalent onjeture about multiples of 12whih turned out to be true, as desribed above.In the majority of sessions using the Enylopedia to make onjeturesabout a sequene of interest, we have found a onjeture whih was notobvious and was non-trivial to settle. On some oasions, however, we havefailed to �nd anything of genuine interest. We have already mentioned thatHR has yet to �nd any interesting onjetures about sequenes A036431and A036432. On another oasion, Jeremy Gow invented a new sequene



242 12. The Appliation of HR to Disovery Tasksalled perniious numbers (sequene A052294), whih have a prime numberof ones in their binary representation. We investigated this by data-miningthe Enylopedia, but ould �nd no onjetures of interest. However, we donot rule out the hane that these numbers are interesting or that HR will�nd some interesting results about them in the future.3Unfortunately, we have not kept a detailed reord of the times when HRhas failed in disovery tasks. Our impression is that, on average, it is highlylikely that data-mining the Enylopedia for onjetures about a sequene ofinterest will produe a onjeture whih is not obviously true or false. How-ever, this is dependent on the sequene being investigated. For instane if thesequene has very few terms, as is the ase with A036432, then the likelihoodof �nding an interesting onjeture will greatly redue. Also, it may turn outthat the onjeture is easily proved and perhaps of less interest than it �rstseemed. This should not detrat from the fat that HR has identi�ed some-thing new to the user, espeially as the onjeture an sometimes turn out tobe very interesting, as we have seen above. Also, the onjeture may turn outto be diÆult to settle { there is one onjeture above whih remains open:that integers of the form n!=3 are refatorable. However, open onjetures ofthis nature are rare.We annot make similar laims about the use of HR for mahine learn-ing tasks or the exploration of an novel algebrai system, beause we haveperformed far fewer experiments of this nature.12.5 Vald�es-P�erez's Mahine Disovery CriteriaIn [Vald�es-P�erez 99℄, Vald�es-P�erez sets ertain riteria for the output fromprograms whih at as ollaborators with sientists. He states that the resultsfrom suh programs should be (a) novel, (b) interesting, () plausible and(d) intelligible. We assess the results from using HR to invent new integersequenes using these riteria.12.5.1 NoveltyFirstly, in mathematis it very diÆult to guarantee that a partiular result isgenuinely novel, and the history of mathematis { as with most sienes { hasmany ases where a partiular �nding has been independently redisovered. Infat, whole theories suh as di�erential alulus have been independently re-invented. HR uses the Enylopedia as a guideline for the novelty of its results.3 In fat, shortly before the �nal version of this book was produed, HR pointed outthat perfet numbers are atually perniious. More spei�ally, the n-th perfetnumber, when written in binary, is a sequene of k ones followed by k� 1 zeros,where k is the n-th Mersenne prime. This follows fairly easily from Theorem 277of [Hardy & Wright 38℄.



12.5 Vald�es-P�erez's Mahine Disovery Criteria 243Given an integer sequene produed by HR, if the terms of the sequene mathwith a sequene already in the Enylopedia up to a ertain level, then HRassumes that the sequenes are the same. While this may lead to HR missingpossibly novel sequenes, it does guarantee that any sequene passing thistest is not present in the Enylopedia, beause there is no sequene with thesame terms. As we saw with refatorable numbers, this does not guaranteethat the sequene is new to mathematis, but it inreases the likelihood thatit is novel.12.5.2 InterestingnessNeil Sloane, who maintains the Enylopedia, will only admit a sequene ifit is interesting. Previously, Sloane would only aept a sequene if it hadappeared in the mathematial literature, but this riteria has been relaxedin favour of an assessment of the interestingness of the sequene. If thereis little to say about a sequene, then it may seem uninteresting. There-fore, as HR also makes onjetures about the sequenes whih are submittedto the Enylopedia, this inreases their interestingness. So far, Sloane hasaepted every sequene we have submitted, so we an laim that the onje-tures about the sequenes are suÆiently interesting for the sequenes to beassessed favourably. This may be beause the onjetures HR makes about itsinventions involve sequenes already in the Enylopedia, whih will inreasethe interestingness of the results in the ontext of the Enylopedia.12.5.3 PlausibilityEah sequene that HR produes has examples, and HR an be used to ex-tend the sequene past the examples it has in its theory. This an add alittle plausibility to the sequene being in�nite, whih is another riteria forentry into the Enylopedia (although this is also overlooked on oasionsby Neil Sloane, for example, HR's sequene A038378 is �nite). Every timeHR makes a onjeture about a sequene it has invented, by data mining theEnylopedia, the onjeture is made using empirial evidene, whih addsto the plausibility of the onjeture. However, not all the data in the Eny-lopedia is used to make the onjeture initially. If the user is interested in apartiular onjeture, he or she an ask HR to hek the onjeture againstall the data in the Enylopedia, whih inreases the plausibility of the on-jeture. Furthermore, using the pruning measures, HR disards onjeturesabout two disjoint sequenes if their ranges are disjoint, as suh onjeturesare less plausible than those where the two ranges overlap. The pruning ofonjetures also inreases the plausibility of the results HR produes.



244 12. The Appliation of HR to Disovery Tasks12.5.4 IntelligibilityFinally, before HR displays those sequenes it has invented whih are not inthe Enylopedia, it orders them in terms of the omplexity of their de�ni-tions, and the user an hoose the least omplex ones to investigate. Thisobviously inreases the intelligibility of the onepts. Furthermore, as thesearhes for onepts that HR undertakes are depth limited in terms of theomplexity of the de�nitions, as disussed in x9.6.3, the onepts produedare generally fairly easy to understand. Also, the onjetures that HR makesare of only a few general types, suh as \all integers of type A are also oftype B", whih inreases the intelligibility of the onjetures.We see that both the new integer sequenes and the onjetures aboutthem that HR produes satisfy all of Vald�es-P�erez's riteria for the resultsfrom a mahine disovery program working in a sienti� domain.12.6 ConlusionsThe use of HR for disovery tasks has been a seondary aim of the HR projetso far. This appliation will play a larger role now that the ore implemen-tation and theory behind HR is in plae. We ertainly hope to ontinue touse HR ourselves for disovering new and interesting fats in mathemat-is. In general it is diÆult to tell whether a onept/onjeture produedby HR is new to mathematis. However, there are projets suh as MBase[Kohlhase & Franke 00℄, Mizar [Trybule 89℄ and the Enylopedia of Combi-natorial Strutures (see http://algo.inria.fr/enylopedia/) whih aimto build mathematial databases like the Enylopedia of Integer Sequenes.With suh databases, it will beome easier to assess the importane of theresults that HR produes.Only as more people use HR for disovery tasks will it beome learwhether theory formation of the type undertaken by HR is a good idea fordisovering new results in mathematis. We hope to have provided some evi-dene for the truth of our hypotheses that HR an produe results whih arenew and surprising to the user and possibly new to mathematis. Certainly,�nding new sequenes for the Enylopedia is a non-trivial and intelligenttask whih many people do regularly. There are at present over 60,000 se-quenes in the Enylopedia and the database is aessed over 16,000 timesa day by people worldwide. We have seen that the sequenes HR produedhave attrated genuine interest from mathematiians and that the resultsprodued by HR an be assessed favourably by Vald�es-P�erez's riteria.



12.6 Conlusions 245HR has found new results for us in four di�erent ways:� By �nding non-standard de�nitions of well known onepts.� By �nding onepts whih ahieve partiular tasks.� By exploring a domain about whih we knew nothing.� By �nding relationships between onepts it has invented and those in ahuman-maintained database.Of these tehniques, we have found that on average the data-mining ap-proah produes interesting results more often. We were surprised by theresults HR found when investigating anti-assoiative algebras and we hopethat HR may be able to �nd interesting theorems in this and other domains.HR's performane at the lassi�ation task was slightly disappointing, butHR did �nd some interesting onepts.It is interesting that in all three projets, HR was used more interativelythan usual. We hope that this will be another area for future researh. HRwas not designed with interation in mind, but we hope that it will be used asa mathematial assistant, performing smaller projets within a larger shemefor disovery in various domains.





13. Related Work
1, 6, 8, 10, 14, 15, 21, 22, 26, 27, 33, 34, 35, 36, 38, 39, 46, 51, : : :A036436. Integers where the number of divisors is a square number.While automated theory formation in mathematis has not been the mostresearhed topi in Arti�ial Intelligene, there is some previous work againstwhih we an evaluate our ontribution. We aim here to ompare and on-trast HR with previous programs in order to put our work in ontext.We ompare HR with mathematial theory formation programs, namelyAM [Lenat 82℄, GT [Epstein 91℄, IL [Sims 90℄ and the system from Bagaiet al [Bagai et al. 93℄. We also ompare HR with the GraÆti program[Fajtlowiz 88℄ whih was developed to perform disovery tasks in graph the-ory and the Progol mahine learning program [Muggleton 95℄. An overviewof eah of these programs has been given in Chapter 2. In this hapter, wegive a brief reap of what eah program did and then provide more detailin order to ompare it with HR. We provide a qualitative omparison basedon how the program operated and how HR operates, and where possible, aquantitative omparison based on the reported output from the program.13.1 A Comparison of HR and the AM ProgramTo reap from Chapter 2, Lenat's AM program was written in 1975 andworked in elementary set and number theory. It started sessions with around115 elementary onepts from set theory and onstruted new onepts usinga set of 242 heuristis for guidane. In an average session, AM would run outof resoures after introduing around 180 new onepts. AM re-invented theonept of natural numbers by onstruting the onept of \anonial bags",whih an be regarded as natural numbers. Due to this suess, AM went onto re-invent many number theoreti onepts and onjetures suh as primenumbers and Goldbah's onjeture (that every even number greater thantwo is the sum of two primes).



248 13. Related Work13.1.1 How AM Formed TheoriesIn AM, onepts were given a frame representation with 25 faets to eahframe, and none, one or multiple entries for eah faet. Some of the faetswere: (i) a de�nition for the onept, (ii) a LISP algorithm for alulatingexamples of the onept, (iii) examples of the onept, (iv) those other on-epts it was a generalisation/speialisation of and (v) onjetures involvingthe onept. AM formed theories by repeatedly performing the task at thetop of an agenda ordered in terms of the interestingness of the tasks. Eahtask involved performing an ation on a faet of a onept. Usually the a-tion was to �ll in the faet, for example to �nd some onjetures about theonept. However, the ation ould also be to hek the faet, e.g. hek thata onjeture was empirially true.To perform a task, AM would look through its heuristi rules, hoosethose whih were appropriate to the task and perform eah of the sub-taskssuggested by the hosen heuristis. Some sub-tasks desribed how to performthe overall task at hand. Other sub-tasks would suggest new tasks to put onthe agenda (whih was how the agenda was extended). Other sub-tasks wouldsuggest inventing new onepts. When this happened, AM would immediatelyreate a frame for the new onept, beause knowledge present at the timewas needed to �ll in some of the faets of the onept, suh as de�nition andexamples. AM only �lled in information whih took little omputation at thisstage, and a task was put on the agenda to �ll in eah of the other faets.The new onepts AM ould suggest inlude: (i) speialisations, e.g. a newfuntion formed by oalesing the inputs of an old onept, i.e. making twoor more inputs the same, (ii) generalisations, (iii) onepts extrated fromthe domain/range of a funtion, e.g. those integers output by a funtion, (iv)inverses of funtions, (v) ompositions of two funtions and (vi) oneptsobtained by ignoring outliers, e.g. the onept of primes exept 2. Some taskson the agenda were to �nd onjetures about a onept, inluding �ndingthat (a) one onept was a speialisation of another, (b) the domain/rangeof a funtion was limited to a partiular type of objet, () no objets of apartiular type existed or (d) the examples of two onepts were the same(i.e. the onepts are equivalent).Beause there ould be as many as 4000 tasks on the agenda at any onetime, AM spent a lot of its time deiding whih it should do �rst. Whenever aheuristi added a task to the agenda, it also supplied reasons why the ation,onept or faet of the task was interesting, aompanied by numerial valuesto grade the worth of the reason. AM then employed a formula involving thenumber of reasons and a weighted sum of the numerial values to alulatean overall worth for the task. The weighted sum gave more emphasis to thereasons why the onept was interesting than the reasons why the faet ortask was interesting. The heuristis whih ould measure the interestingnessof any onept were reorded as heuristis 9 to 20 in [Lenat 82℄, and inluded:



13.1 A Comparison of HR and the AM Program 2499 A onept is interesting if there are some interesting onjetures about it.13 A onept is dull if, after several attempts, only a ouple of exampleshave been found.15 A onept C is interesting if all the examples satisfy the rarely-satis�edprediate P , or if there is an unusual onjeture involving C.18 A onept is interesting if one of its generalisations or speialisations hasan interesting property not true of the onept itself.20 A onept is more interesting if derived in more than one way.(Note that these have been paraphrased from Lenat's originals).AM also had ways to assess the interestingness of onepts formed in apartiular way, for example the interestingness of onepts formed by om-posing two previous onepts ould be measured by heuristis 179 to 189,two of whih were:180 A omposition F = GoH is interesting if F has an interesting propertynot possessed by either G or H .187 A omposition F = GoH is interesting if the range of H is equal to,not just intersets, one omponent of the domain of G.AM would also measure the interestingness of onjetures, so that it ouldorretly assess tasks relating to the onjetures faet of onepts. Heuristis65 to 68 seem to be the only heuristis whih do this, for example:66 A non-onstrutive existene onjeture is interesting.At any stage during a session, the user ould interrupt AM and tell it thata partiular onept was interesting by giving it a name. Lenat says in[Lenat 82℄ that users ould:... kik AM in one diretion or another. e.g. by interrupting andtelling AM that Sets are more interesting than Numbers. (p. 130)Many of AM's heuristis were designed to keep the fous on suh preferredonepts, by spreading around the interest the user had shown in them. Forexample, these heuristis keep the attention on onepts and onjetures re-lated to interesting onepts:16 A onept is interesting if losely related to a very interesting onept.65 A onjeture about onept X is interesting if X is very interesting.In fat, AM ould make a little interestingness go a long way: of the 43heuristis designed to assess the interestingness of a onept, 33 of theminvolve passing on interestingness derived elsewhere.



250 13. Related Work13.1.2 Misoneptions about AMThere are three main misoneptions about AM:� It was an implementation of a simple, well de�ned heuristi searh appli-able to reativity tasks in general.� It worked autonomously.� It added to mathematial knowledge.The suess Lenat ahieved with AM, oupled with these misoneptionshave led to AM being one of the most widely ited programs in Arti�ialIntelligene. AM is still mentioned whenever issues of reativity or sienti�disovery arise, for example [Buhanan 00℄ and [Vald�es-P�erez 99℄. Beause ofthe impat of AM, we feel ompelled to provide an argument for why theabove statements are indeed misoneptions.Clarity and Generality of the Heuristi Searh.Muh ritiism has been aimed at AM. Due to the large number of heuristisemployed, the way AM formed theories is ompliated. Rithie and Hannamake many ritiisms in [Rithie & Hanna 84℄ about the model of theoryformation implemented in AM, suh as:This renders the onept of a \Conept" even less lear. (p. 255)andThe whole notion of a \Conept" is onfusing. (p. 256)We have also found the theory behind AM very onfusing. In partiular, Lenatonfuses what we all onepts, prodution rules and heuristi measures. Forexample, in [Lenat 82℄ Lenat points out that:Compose is both a onept and an operation whih results in newonepts. (p. 10)As mentioned in [Buhanan 00℄, suh an overlap an lead to inreased re-ativity in a program through an ability to funtion at the meta-level, andit may be that theory formation is inherently omplex. However, this doesnot detrat from the fat that the model of theory formation implementedin AM is ompliated and is more diÆult to understand than in other pro-grams suh as GT and IL. To ompound this, Lenat's paraphrasing of whatthe heuristis do in [Lenat 76℄ and [Lenat 82℄, whih was meant to improvereadability, atually serves to disguise the proesses at work. For instane, inheuristi 15 we gave on page 249 above, Lenat never explains exatly whatrarely satis�ed means. In this ase, it is possible to infer what the heuristidid, but in other ases, as pointed out in [Rithie & Hanna 84℄, it is verydiÆult to understand what the heuristi did.



13.1 A Comparison of HR and the AM Program 251Rithie and Hanna also suggest that there is too muh �ne-tuning in AM.In partiular they lament that:... it is possible to gain the impression that the suessful \disovery"was the result of various speially designed piees of information,aimed at ahieving this e�et. (p. 263)Rithie and Hanna provide good evidene for this laim by pointing out veryspeialised heuristis and giving a ase study { the invention of the oneptof number, a pivotal point in AM's theory formation { where the inventionwas aused by the use of seemingly highly �ne-tuned proesses.We add to the evidene for this ritiism by �rst pointing out that in[Lenat 82℄ Lenat proposes a way of writing a theory formation program thus:Suppose a large olletion of these heuristi strategies has been as-sembled (e.g. by analysing a great many disoveries, and writingdown new heuristi rules whenever neessary) ... one an imaginestarting from a basi ore of knowledge and \running" the heurististo generate new onepts. ... Suh syntheses are preisely what AMdoes. (p. 5)This suggests that AM was written by Lenat looking at partiular oneptsor onjetures suh as the prime fatorisation theorem and adding in heuris-tis until AM suessfully found the result. Beause the heuristis Lenat talksabout inluding initial onepts themselves (suh as the ompose onept) aswell as prodution rules and measures of interestingness, it is not unreason-able to imagine Lenat hanging many aspets of the program to enable AMto reah ertain onepts or onjetures.From our own experiene, we believe that to get to the prime fatorisationtheorem having started with fundamental onepts suh as sets is an enor-mous ahievement given the small number of onepts AM ould introdue(around 180) in a partiular session. This further suggests some element of�ne-tuning and the interative nature of AM (as disussed below). Further-more, we note that in [Lenat 82℄, Lenat points out that:AM's performane degraded more and more as it progressed furtheraway from its initial base of onepts. (p. 7)Lenat explains this degradation in terms of the need for AM to introduemore heuristis automatially. As disussed in x13.1.3, Lenat subsequentlydeveloped the Eurisko program to do so [Lenat 83℄. We o�er an alternativeexplanation. If the �ne-tuning was to the extent suggested by Rithie andHanna, some of the heuristis would be very speialised and only apply toinitial onepts, or those immediately derived from them. Therefore, as atheory progressed, the heuristis would beome less appliable and AM'sperformane would degrade, �tting the observations. AM's heuristis do seemto be general purpose, due to Lenat's paraphrasing of what they do. However,if the implementations were generally appliable, there seems to be no reason



252 13. Related Workwhy they shouldn't work with onepts and onjetures introdued later ina theory.Note however, that Lenat strenuously denies �ne-tuning AM. He statesin [Lenat & Brown 84℄ that:Tuning the system extensively (exept to improve its use of spaeand time) would have negated the experiment utterly; (p.289)We hope to have shown that there is a misoneption about the simpliityand generality of Lenat's model of theory formation. Rithie and Hanna statein no unertain terms that the theory behind AM is onfused and we reinforethis onlusion. They also provide evidene of �ne-tuning and we supply anargument of our own for this. Finally, the generality of AM is put into doubtby Lenat himself in [Lenat & Brown 84℄ when the relationship between AM'ssuess and the representation of onepts as LISP programs is highlighted:What [AM℄ was atually doing from moment to moment was \synta-tially mutating small LISP programs" ... We have seen the depen-dene of AM's performane upon its representation of math onepts'harateristi funtions in LISP ... (p. 291)The Autonomy of AM.Firstly, we note that AM ould ertainly run without human intervention.However, Lenat himself says in [Lenat 82℄ that:There is one important result to observe: the very best examples ofAM in ation were brought to fruition only by a human developer.(p. 130)Rithie and Hanna also point out that, as theory formation revolves aroundonepts whih are given names by the user:This means that re-naming (as shown in all the sample runs) is notpurely notational alteration, but represents advie from the user. (p.260)If we remember that interestingness was passed around to a great extent bythe heuristis, we see that an intervention by the user would greatly inuenethe searh performed. Note also that the user ould supply more eÆient LISPode for a partiular onept if it was taking too long to alulate examples.Some of the heuristis used the eÆieny of the algorithm to deide what todo, so we see that seemingly innoent hanges by the user may have a�etedAM's searh dramatially.The interative nature of AM is highlighted in another ritial reportabout AM [Anderson 89℄, where Anderson states that:Lenat and AM ould ooperate to disover the unique fatorisationtheorem, but AM ould not do so by itself. (p. 26)



13.1 A Comparison of HR and the AM Program 253AM's Addition to Mathematis.It is ertainly true that AM made some disoveries in the sense that theywere new to Lenat. However, no onepts or onjetures whih were new tomathematis were found in AM's output. AM did re-invent highly ompositenumbers, whih Lenat alled maximally-divisible numbers . Lenat found somenew results about these himself and supplied the theorems in [Lenat 76℄.With searhes resulting in only 180 or so new onepts, and AM... ultimately redisovering hundreds of ommon onepts (e.g. num-bers) and theorems (e.g. unique fatorisation) (p. 2)(as Lenat says in [Lenat 82℄), it is striking that in suh a rih searh spae,AM never found anything new to mathematis.13.1.3 Programs Based on AMIronially, although Lenat did muh to promote the area of automated theoryformation { Lenat won the alaimed Computers and Thought Award for hiswork on the AM program { it seems likely that he also hindered work in thisarea. Rithie and Hanna state in [Rithie & Hanna 84℄ that:We believe that it would be extremely diÆult to base further re-searh in this area on AM, sine the disparity between the writtenaount and the atual program means that there is not in fat atested theoretial basis from whih to work. (p. 266)As well as having no lear theoretial framework from AM to build upon,any subsequent program would have to ahieve similar suess in terms ofthe lassially interesting results it re-invents, in order for it to advane thestate of the art. If Rithie and Hanna are orret, this would be unlikely dueto the amount of �ne-tuning that AM required to ahieve these suesses.However, there has been some subsequent work based on AM whihahieved some suess. Firstly, as mentioned above, to implement the no-tion that theory formation required an ability to automatially invent newheuristis, Lenat wrote the Eurisko program [Lenat 83℄. Eurisko had limitedsuess in mathematial domains, although it did work well in other domainssuh as war games [Wiseman 81℄. Eurisko doesn't seem to have added muhto the understanding of mathematial disovery.The Cyrano program disussed in [Haase 86a℄ and more fully in [Haase 86b℄was desribed by its author, Ken Haase, as:... a thoughtful re-implementation of Lenat's ontroversial Euriskoprogram. (p. 546)Haase begins by desribing programs suh as Eurisko and Cyrano as searhproesses whih reon�gure their own searh spae. He then lari�es someof the theory behind AM and Eurisko by (i) identifying onstraints on the



254 13. Related Workdesign of disovery systems, (ii) ollapsing more of the ontrol struture intothe representation and (iii) speifying dependenies in the onept formationproess. The resulting Cyrano program has muh of the funtionality of AMand Eurisko but with a muh more omprehensible ontrol struture.To help larify the theory behind AM, Bundy provides a rational reon-strution of AM in [Bundy 83℄. This aount extrats the theory behind AMand learly shows how onepts are formed, examples are sought and hekedand onjetures are made. The theory is illustrated with desriptions of howAM invented prime numbers and how it onjetured the prime fatorisationtheorem.The ARE system by Weimin Shen greatly improved on the way AM builtnew funtions from old ones [Shen 87℄. Shen introdued funtional transfor-mations, whih ould turn one or two funtions into another (e.g. by invertinga funtion, or by omposing two funtions). This lari�ed how onept for-mation ould be ahieved with funtions and produed a system with greateronept formation powers than AM. For example, the ARE system ouldre-invent the onepts of self-exponentiation (xx) and logarithms, whih AMould not do.In ontrast to improving the onept formation of AM, the DC system[Morales 85℄ onentrated on providing a simpler, more robust model foronjeture making. More reently, the arhiteture behind AM, in partiularthe use of justi�ations for the hoie of the next task, has been used in theHAMB program [Livingstone et al. 99℄. HAMB has been used to make signif-iant and novel disoveries in the domain of maromoleular rystallization.13.1.4 A Qualitative Comparison of AM and HRFirstly, there are some similarities in the methodology behind the onstru-tion of AM and HR. In partiular, we have seen above that Lenat designedAM by looking at disoveries in set theory and number theory and addingheuristis to enable AM to re-disover the results. This leaves AM open tothe ritiism that it is overly �ne-tuned to re-disover some major theoremsfrom number theory, in partiular the prime fatorisation theorem. Whendesigning HR, we looked at partiular types of onept and implementedprodution rules to enable HR to �nd onepts of that nature. For exam-ple, looking at Abelian groups, omplete graphs and equilateral triangles, weadded the forall prodution rule to �nd objets where a ertain phenomena{ suh as two nodes being adjaent { ourred in every ase. We hope thismethodology is less subjet to ritiism about �ne-tuning, as we were inter-ested in a range of onepts rather than individual ones and eah produtionrule invents many more onepts than the original motivational ones. It isimportant to note that, while HR uses only seven onept formation teh-niques, AM had more heuristis than the number of onepts it would inventin a partiular session.



13.1 A Comparison of HR and the AM Program 255If we look at the domains that AM and HR worked in, we see that both hadmost suess in number theory. AM atually started sessions with oneptsfrom set theory and invented the onept of natural numbers from whihmuh of its theory followed. Rithie and Hanna argue that AM was �ne-tuned to invent natural numbers and it is lear that Lenat guided AM duringsessions. Aside from the question of how AM invented natural numbers, itis not lear that a program whih has been asked to form a theory in onedomain atually working in another domain is desirable, as this suggests verylimited ontrol over what the program does. However, the ability to de�neand explore a new domain exhibits reativity.Lenat also experimented with AM in plane geometry, but the oneptsit produed were very numerial in nature. For example in [Lenat 82℄ Lenatgives a \use of Goldbah's onjeture": that all angles an be built up towithin one degree by adding two angles of prime degree. HR is open to a sim-ilar ritiism { the onepts it produes in graph theory are more numerithan the ombinatorial and topologial onepts whih appear in the graphtheory literature. We argue that this is beause ombinatori and topologialonepts arise from ross domain theory formation, where two domains aredeveloped and onepts from both are ombined. This is beyond the apabili-ties of the version of HR desribed in this book, but we disuss this possibilityin x14.3.2. Note that AM never worked in �nite algebrai domains or graphtheory. Beause the use of AM in number theory arose from the use in settheory and the appliation to geometry was never more than a small exper-iment, we onlude that AM's theory formation was never seriously appliedto more than one domain.AM was given many more bakground onepts than HR: AM startedwith 115 onepts, whereas HR starts with only a few onepts. However,some of AM's onepts were atually what we have been alling produtionrules. For example, AM starts with the onept of \ompose" whih e�etivelyomposes two funtions in a similar fashion to HR's ompose prodution rule.Also, the onepts in AM were of a muh lower level than those given to HR(in as muh as AM has to re-invent some of the onepts given to HR { seeTable 13.1 on page 260). However, it is fair to say that HR does not start withvery ompliated onepts. We only supply HR with fundamental oneptsfrom a domain, suh as nodes and edges in graph theory.HR has a more varied range of mathematial abilities than AM. In parti-ular, HR has more onjeture settling abilities than AM. HR an use Otter toprove theorems and also has a forward haining mehanism to determine thata onjeture follows from those already proved. It an also use MACE to �ndounterexamples to false onjetures. This is a lear advane over AM, whihwas originally ritiised for having no theorem proving ability [Bundy 83℄.Looking spei�ally at the onept formation abilities in eah program,we notie many similarities. In partiular, AM has implementations of whatwe have alled the ompose and math prodution rules. AM also had a



256 13. Related Workgeneralisation proedure for onept formation whih involved removing aonjuntion. HR only performs speialisations, beause it builds oneptsfrom simpler onepts, therefore more general onepts are always built beforemore spei� ones. Hene HR has no need for a generalisation prodution rule.However, we do not rule out implementing one in future if so required.In AM, the onstrution of prime numbers was suggested by an extremityheuristi, whih made AM look for entities where the number of objets of apartiular nature is as large or as small as possible. The extremity heuristiovers some of the funtionality of the size and split prodution rules whihount the number of objets and then �x the number to a partiular valuerespetively. In ertain irumstanes, it an also over the funtionality of theforall prodution rule, where all subobjets are objets (learly an extremity).Lenat doesn't report that AM forms onepts suh as the � funtion, whihounts the number of divisors of an integer, and it appears that ounting ingeneral is not available to AM. Some onepts whih HR produes using theexists and negate prodution rules are overed by AM attempting to makeonjetures by asking whih integers from a larger set have a property (suhas being a perfet square) and whih do not.Lenat states that a large proportion of the onepts AM produes are \reallosers" ([Lenat 82℄, p. 127). Unfortunately, he never quali�es this remark, andwe have to interpret his de�nition of a loser. This ould possibly be oneptsfor whih there are few or no examples. It ould also be onepts with non-sensial de�nitions beause the LISP ode for them does not ompile. In theformer ase, HR also produes onepts with low appliability. However, inthe latter ase, beause eah of HR's prodution rules perform a well de�nedmanipulation on the de�nition of old onepts, it is not possible (subjet tobugs in implementation) for it to produe either a non-sensial Prolog orOtter de�nition for a onept.The presentation of onepts di�ers quite markedly. AM's onepts werepresented as piees of LISP ode whih the user had to interpret, whih islearly undesirable. AM had no other ways of presenting a onept unlessthe user provided a name for it. In ontrast, HR is able to produe di�erentstyles of de�nition for a onept depending on the use of the de�nition (e.g.being passed to Otter).The onjeture making in HR and AM is very similar. In partiular, bothmake non-existene, impliation and equivalene onjetures. Also, AM will`merge' two onepts if it believes them to be equivalent, in a similar way toHR disarding a new onept if it is proved to be equivalent to an old one.AM, unlike HR, will attempt to �x a false onjeture by exluding boundaryvalues. For example, it will make the onjeture that all prime numbers areodd. Then, on realising that this is not true for the number 2, AM exludesthis outlier and orretly states that all primes greater than 2 are odd. Fur-thermore, it appears that AM will make weaker statements if it annot �x a



13.1 A Comparison of HR and the AM Program 257onjeture in this way. For example, AM states that the funtion1 ADD�1usually (but not always) ontains a pair of primes. It then asks for whih num-bers this is true, thus driving onept formation. The ability to alter oneptde�nitions to make a onjeture true is an interesting ability whih Lakatospoints out an drive theory formation [Lakatos 76℄. We hope to provide HRwith this ability in future versions.Both programs maintain an agenda to determine whih task to do next.However, there was a range of di�erent tasks on AM's agenda, and onlyone on HR's { attempt to form a new onept by applying a produtionrule to a onept. There is a �xed order in whih HR arries out partiulartasks: it attempts to produe a new onept, then if it appears the same as aprevious one, a onjeture is made and a proof attempted and so on. In HR,when one task ends another may automatially start, for example, if a proofattempt fails, a disproof attempt will start. Therefore, the agenda only needsto determine whih prodution rule step to perform, from whih other tasksmay follow automatially.In ontrast, the tasks themselves were ordered on the agenda for AM.For example, in one situation, �lling in examples of a onept may takepreedene over �nding onjetures about the onept. Beause eah onepthad 25 faets and AM had a very limited number of operations it ouldperform, it did not automatially alulate everything about a onept whenit was originally formed, and was more areful with its time. We an see themerit in this approah, but have not found it neessary in HR as the timetaken to alulate all aspets of a onept is small. Obviously, this is due ina large part to the faster omputers available today.As mentioned previously, the interestingness of onepts and onjetureswas largely passed around by the heuristis in AM. For example, AM assesseda onept as interesting if its onjetures were interesting and vie versa. Wehave attempted to employ muh more onrete measures of interestingnessbased on intrinsi measures of onepts (suh as omplexity) and relativemeasures of onepts (suh as novelty). AM also gave preedene to oneptswhih were reently introdued. This enourages a depth �rst searh whihHR an also perform if the user desires. However, we hose not to inreasethe interestingness of a onept simply beause it is new. Similarly, we hosenot to inrease the interestingness of a onept if its parents are interesting,preferring to assess the merits of a onept regardless of the suess of itsparents.Both programs use the interestingness of a onjeture to assess the worthof the onepts involved in the onjeture. Most of AM's measures for on-jetures involve the interestingness of the onepts involved, whereas we havegone to some length to make the assessment of onjetures independent ofthe onepts involved so that onepts are not rewarded/penalised twie (as1 The ADD�1 funtion maps an integer n to the set of pairs of integers whih addtogether to give n.



258 13. Related Workdisussed in x10.5.1). In AM, there is an apparent ontradition in how on-jetures are used to assess onepts. Heuristi 7 in [Lenat 76℄ states that:Any entity X is interesting if it is related (via a rare, interestingrelation) to another entity whih arose in a very di�erent way and isnot obviously tied to X. (p. 229)This sounds very muh like the appliation of HR's surprisingness measurefor onjetures: onepts in surprising onjetures are interesting. However,also in [Lenat 76℄, Lenat gives an example session where AM gives Goldbah'sonjeture (that every even number greater than 2 is the sum of two primes)but then AM states that it expets the onjeture will be \ute but useless".On asking AM why, Lenat reeives the answer:... The more losely an operation X is related to the onept Divisors-of, the more natural will be any onjeture involving both that op-eration X and Primes ... But this onjeture, whih involves Primesand ADD�1 will be ute but useless, sine the relation ADD�1 isunrelated to the relation Divisors-of. (p. 26)This seems to ontradit heuristi 7 above, by stating that beause Gold-bah's onjeture relates two seemingly unrelated onepts it must be use-less, whih is entirely opposite to our surprisingness measure. We have beenunable to identify the heuristi responsible for AM making the above judge-ment, whih is typial of the way in whih Lenat reports AM's sessions. Insummarising the above example, Lenat states that:AM quite orretly predited that this [Goldbah's onjeture℄ wouldturn out to be ute but of no future use mathematially. (p. 27)To state that Goldbah's onjeture is of no use mathematially is learlymisguided beause attempts to prove Goldbah's onjeture have led to theintrodution of muh important number theory. Note also that AM's su-ess was based on the fat that it re-invented amongst others, Goldbah'sonjeture, yet both Lenat and AM state that it is of no use mathematially.AM had some onrete measures of a onept whih were not based oninterestingness derived elsewhere. For example, AM has a surprisingness mea-sure for onepts whih is similar to HR's novelty measure, but more general:if a onept has a property not possessed by its parents it is judged to beinteresting. Also, heuristi 13 from [Lenat 82℄ given on page 249 above isequivalent to using HR's appliability measure to disriminate against on-epts with low appliability. However in HR, the user is free to speify thatonepts with few examples are atually interesting, whih may be the asein some domains.This highlights the di�erene in how the user inuenes the searh in bothprograms. In HR, the user sets various parameters, mainly stipulating how toassess the interestingness of onepts and onjetures, then sets HR running,returning only to investigate the theory produed. In ontrast, in AM the



13.1 A Comparison of HR and the AM Program 259user an speify interest in partiular onepts and tell AM whih task toperform next. This shows that HR an work more autonomously.It is not diÆult to onlude that HR has a simpler model of theory for-mation than AM. HR starts with a handful of bakground onepts, whereasAM starts with 115. HR has just seven prodution rules, eleven ways to as-sess a onept and seven ways to assess a onjeture. In ontrast, AM has242 heuristis, some of whih are atually used as onepts, some of whihassess onepts and others whih propose new onepts. Having initially readLenat's thesis [Lenat 76℄, we found it very diÆult to understand the modelof theory formation implemented. It was a breakthrough for our projet whenwe learly separated the notion of a onept from the prodution rules formaking new onepts and from the heuristis measures designed to assess theonepts. We note however that the onfusion of these notions may enablemore meta-level abilities suh as analogy.13.1.5 A Quantitative Comparison of AM and HRWe ompare the results of AM and HR in number theory as this is theonly domain both programs work in. This has been problemati for threereasons. Firstly, Lenat does not provide an expliit list of those onepts andonjetures whih he has seen in AM's output. Seondly, it is often hardto deode Lenat's paraphrasing of what AM did, so it is sometimes easy tomisinterpret the onepts/onjetures AM produed during some of its tasks.Thirdly, even in the `task by task' sessions, Lenat misses bloks of up to 20tasks out and we annot be sure whether any onepts or onjetures havebeen introdued during this time.To ompile the list of number theory onepts and onjetures re-inventedby AM, we have looked through the example sessions given in [Lenat 76℄. Thesession given in appendix 5, setion 2 of [Lenat 76℄ overs most of the oneptswe have found in other sessions. Hene, it was informative to onentrate onthis session. In the session, AM performs 256 tasks and in Table 13.1 wepresent the onepts it formed during the session with the task numberswhih led to their introdution. We also state whether these onepts havebeen seen in HR's output. Those onepts output by AM in other sessions aregiven at the end of Table 13.1. Non-standard entries in the table are markedwith an asterix and disussed below.Table 13.1 indiates that �ve of the onepts that AM had to re-invent aregiven to HR by the user, in aordane with our remark in x13.1.4 that HRstarts with higher level onepts than AM. Note that even numbers don'tseem to be expliitly de�ned in the session, but they are referened later.It seems likely that they are de�ned either when the onept of doubling isintrodued (the integers whih are the produt of a doubling are just the evennumbers) or during one of the periods where Lenat does not report the tasksAM performs.



260 13. Related WorkTask Conept Desription CoveredNumber by HR44 Natural numbers Given47 Addition of two numbers Given53 Less than or equal to Given57 Multipliation Given75 Doubling No75 (*)Even numbers Yes78 Squaring Yes79 x+ (y + z) Yes79 (x+ y) + z Yes79 x� (y � z) Yes79 (x� y)� z Yes129 Halving Yes134 Integer square root Yes138 Perfet squares Yes144 Divisors Given150 Integers with 1 divisor Yes152 Integers with 2 divisors (prime numbers) Yes154 Integers with 3 divisors Yes162 Integers of the form p4 (square of square of a prime) Yes165 Divisors of integers of the form p4 Yes178 Prime divisors Yes190 Addition restrited to primes Yes190 Addition restrited to even numbers Yes201 Integers uniquely representable as the sum of two primes Yes214 Addition of bags of square numbers No214 Addition of bags of even numbers No254 Pythagorean triples Yes255 The sum of two primes Yes256 Prime pairs YesOdd numbers YesOdd primes YesAdding two YesHighly omposite numbers Yes(*)Table 13.1 Conepts re-invented by AMHR has good overage (90%) of the number theory onepts that AMre-invented. In partiular, HR overs all the number types produed by AM,namely evens, odds, squares, primes, odd primes, integers with three divi-sors, integers of the form p4, integers uniquely representable as the sum oftwo primes and highly omposite numbers. We ount the highly ompositenumbers even though we used a speial purpose algorithm for onstrutinginteger sequenes setting the reord for a partiular funtion. As disussedin x12.3, this algorithm forms a prodution rule in the latest Java version ofHR, but is beyond the sope of this book.HR doesn't re-invent doubling beause it has no \invert" prodution rule.Therefore, whereas it an invent the onept of halving an integer, it annot



13.1 A Comparison of HR and the AM Program 261invert this funtion to invent the onept of doubling an integer. We haveonsidered implementing suh a prodution rule, but have so far not done sobeause we feel HR should prove that a onept is invertible before attemptingto invert it. However, with hindsight, suh a prodution rule may have addedto HR's funtionality. Note that HR re-invents squaring using the funtion:f(n) = jf(a; b) : a � n & b � ngj (as mentioned in x11.5.3). Hene it does not�nd the standard de�nition of squaring, again due to the lak of an \invert"prodution rule.The other two onepts whih HR annot invent involve the representationof integers in set theoreti terms, in partiular the ability to add together abag of integers. We hope that a ross-domain version of HR (whih we shalldisuss in x14.3.2) with aess to onepts from both number theory and settheory will be able to invent onepts with suh set theoreti representations,in partiular the onept of partitions.If we look at the dual question, i.e. the onepts whih HR has re-inventedwhih were not re-invented by AM, we see that HR re-invents around fourtimes as many lassially interesting onepts as AM. As disussed in x11.5,HR has so far re-invented more than 120 integer sequenes found in theEnylopedia of Integer Sequenes, whereas AM's re-inventions { as listed inTable 13.1 { amount to only 33. Of the onepts whih HR re-invents but AMdoes not, there are some important number types suh as perfet numbers,square free numbers, powers of 2, ubes, repdigit numbers and triangularnumbers. There are also some important funtions whih AM does not re-invent, suh as the �-funtion (number of integers less than or equal to nand o-prime to n) and the �-funtion (number of primes less than or equalto n). AM's poor performane ompared to HR is highlighted by the fatthat, while HR has so far re-invented 27 onepts lassi�ed as \ore" in theEnylopedia, AM re-invented only �ve, namely natural numbers and even,odd, square and prime numbers.Table 13.2 ontains the number theory onjetures whih were output byAM in the session presented in [Lenat 76℄, appendix 5, setion 2. Note �rstly,as pointed out in [Bundy 83℄, that Goldbah's onjeture is inorretly statedin this session thus: All even numbers greater than 2 an be represented asa sum of prime numbers (as opposed to a sum of two prime numbers, whihGoldbah notied). For example (taken from [Bundy 83℄) 6 an be written as2+2+2. Hene AM's onjeture is weaker than Goldbah's and easily proved.In fat, AM only orretly states Goldbah's onjeture in the session givenin hapter 2 of [Lenat 76℄ whih has been heavily edited by Lenat. This putsinto doubt whether AM did atually re-invent Goldbah's onjeture and itis possible that Lenat inorretly interpreted AM's weaker result.HR misses three onjetures made by AM. The last of these is atuallyfalse { that the divisors of a perfet square are all perfet squares. Lenat saysin [Lenat 76℄ that:This did AM no harm, and AM never deteted its mistake. (p. 314)



262 13. Related WorkTask Conjeture Desription CoveredNumber by HR56 8 n; n � n Yes84 Assoiativity of addition Yes89 Assoiativity of multipliation Yes151 No integers have zero divisors Yes155 Integers with 3 divisors are perfet squares Yes158 The square root of integers with 3 divisors is a prime Yes161 8 n; n is a square of a prime i� n has 3 divisors Yes176 There are no primes with an integer square root Yes177 The fatorisation of integers always ontains Noa bag of primes181 The prime fatorisation theorem No198 (*) Goldbah's onjeture Yes205 The produt of two perfet squares is a perfet square Yes207 8 n; n� 1 = n Yes211 8 n; n+ n = 2� n Yes217 The produt of two even numbers is an even number Yes220 (False) The divisors of a perfet square are all Noperfet squaresTable 13.2 Conjetures re-invented by AMHR doesn't make the same mistake beause it noties that 9 is a perfetsquare but this is divisible by 3, whih is not a perfet square, and so it doesnot repeat the mistake made by AM. HR's most notable omission is the primefatorisation theorem. Muh of AM's suess in number theory ame from itsrepresentation of integers as anonial bags, whih enables it to make similarset theoreti de�nitions for addition and multipliation. In partiular, AMonstruted the inv times funtion, whih takes an integer to a set of bagsof divisors. Restriting this to bags of primes led AM to the statement of theprime fatorisation theorem. This is also a ase where AM's ability to alter ade�nition to make a onjeture work was used to good e�et (the theorem isnot true of the number 1). Note that Bundy provides a detailed explanationof how AM re-disovered the prime fatorisation theorem in [Bundy 83℄.One anomaly whih is not explained is why AM misses the onjeturethat HR makes: an integer has an odd number of divisors if and only if it isa perfet square. AM makes the weaker onjeture that integers with threedivisors are square.13.1.6 Summary: The AM ProgramAM is one of the most widely ited programs in Arti�ial Intelligene. Thisis partly beause of its results and Lenat's reporting of them. As reported,the program started with elementary set theory onepts, re-invented theonept of number and deided to look at number theory, where it re-inventedonepts suh as prime numbers and made well known onjetures suh as



13.1 A Comparison of HR and the AM Program 263the prime fatorisation theorem and Goldbah's onjeture. In reality, AMwas heavily guided by Lenat and had ertain very speialised heuristis whihapplied in some ases to only one situation.However, suh a disparity between the reporting and the atual working ofprograms appears to be a problem ommon to early approahes to Arti�ialIntelligene, as Rithie points out in [Rithie 94℄:Indeed, some of the more famous exemplars of AI whih now appearin textbooks as lassi milestones in the history of the �eld quitepossibly ontain as many internal oddities as AM. (p. 62)We have re-disovered some of the ideas about mathematial theory for-mation that were implemented in AM. We missed Lenat's disussion of thesewhen �rst reading about AM due to the diÆult nature of the manusriptsabout AM { often the most pertinent points about AM are found in footnotesin the appendies of Lenat's PhD thesis [Lenat 76℄.We have added to the ritiism of AM to dispel myths about it so thatthe �eld of automated theory formation in mathematis an emerge from itsshadow. However, as we noted in Chapter 1, Lenat's work was a motivation forthe HR projet beause it showed that building a theory through exploratoryonept formation and onjeture making an be ahieved if properly on-trolled. Furthermore, the use of high level notions suh as analogy, symmetryand extremity to form theories was ahead of its time. AM is a motivationalprogram in terms of what it set out to ahieve { theory formation throughexploration { and the tehniques it used. This motivational quality remainsregardless of Lenat's implementation and reporting of this work, whih leavemuh to be desired.There is some overlap in how HR and AM work. In partiular, thereare similarities in how they build and assess onepts and onjetures andsimilarities in the agenda mehanism. There are some qualities of AM that wehope to give HR in future, in partiular, an ability to alter onept de�nitionsto save faulty onjetures and some of the meta-level abilities possessed byAM, suh as making analogies (see x14.3.1 later). HR makes many minoradvanes over AM, for example the ability to present de�nitions in di�erentstyles depending on how the de�nition is going to be used. Another smalladvane is the ability to measure intrinsi properties of onjetures.There are also �ve major advanes we believe that HR makes over AM:� HR has a simpler model of theory formation.� HR has more mathematial funtionality.� HR works suessfully in more domains than AM.� HR an work more autonomously.� HR has been suessfully applied to disovery tasks in number theory.



264 13. Related WorkTo onlude, we see that the three (misoneption) statements given inx13.1.2 are more true of HR than of AM. Not only does HR have a sim-pler model of theory formation than AM, it is also more autonomous. Also,whereas AM did not add to mathematis, some onepts and onjeturesmade by HR have appeared in a mathematis journal [Colton 99℄ and 21 in-teger sequenes invented by HR have been aepted into a human maintainedrepository, the Enylopedia of Integer Sequenes.13.2 A Comparison of HR and the GT ProgramTo reap from Chapter 2, the GT program was written in 1986 by SusanEpstein and worked in graph theory. It formed theories using both dedutiveand indutive reasoning and the model of theory formation was lear andonise. GT was able to form theories ontaining onepts with examplesand de�nitions, onjetures, theorems and proofs from only a small amountof initial information.13.2.1 How GT Formed TheoriesGT dealt with properties of graphs represented as triples < f; S; � > on-sisting of a set of base ases, S, a onstrutor, f , and a set of onstraintsfor the onstrutor, �. For example, to de�ne the star property (as shownin Figure 2.1 on page 15), the base ase would be the trivial graph (withone node, no edges) and the onstrutor would add one node and an edgebetween the new node and an old node, subjet to the onstraint that theold node must be on more edges than any other node. This arefully thoughtout representation was key to GT's suess. Epstein proved in [Epstein 83℄that 42 lassially interesting graph theory onepts, inluding yles, Eule-rian graphs and k-oloured graphs, ould be represented in this manner in asound and omplete way, i.e. the representation overs all the graphs de�nedin the lassially interesting way, and no inorret ones.With this representation of onepts, GT ould generate examples of aonept (Epstein alls this \doodling", [Epstein 99℄) by starting with the baseases and repeatedly applying the onstrutor, subjet to the onstraints.Conept formation was ahieved by either: (a) speialising a previous on-ept by removing base ases or strengthening the onstraints, (b) generalis-ing a previous onept by adding base ases, expanding the onstrutor, orby relaxing the onstraints, or () merging properties A and B, for examplereating a new graph property with A's base ases and onstrutor, but theonstraints of A and B, (subjet to various onditions).Conjeture making was ahieved by notiing that one graph property sub-sumed another or by onjeturing that there are no graphs with two partiu-lar properties. For example, GT onjetured that odd-regular graphs annot



13.2 A Comparison of HR and the GT Program 265have an odd number of verties. Conjetures were proved using one of asmall number of tehniques. A good example is the theorem that there areno graphs with an odd number of verties for whih all the verties have anodd degree. How GT proved this has been disussed already in x2.2.2 and theproof relies on knowledge about natural numbers (in this ase, that a numberannot be both even and odd).GT worked by repeatedly ompleting one of six types of tasks: (i) generateexamples of graphs with ertain properties, (ii) see if one property subsumesanother, (iii) see if two properties are equivalent, (iv) see if a merger betweentwo properties fails, (v) generalise a onept and (vi) speialise a onept.Eah task was plaed on an agenda following various rules, inluding:� If a property has few examples in the database, then immediately generatemore examples for it.� Properties P and Q are better andidates for tasks (ii) or (iii) above if theset of base ases for P and Q are similar. Two sets are most similar if theyare equal, less similar if one is a subset of the other and less similar still ifthey only have a non-trivial intersetion.� Only perform a speialisation or generalisation task with a onept beforea onjeture-making task if the onept has been agged by the user as a\fous" (see later).If a onjeture task was at the top of the agenda, then before tryingto prove the onjeture, GT would �rst see if there was empirial evideneagainst it, using the generated examples of the graphs (note that a onjeturewas suggested only using the base ases). If the task was to hek a mergeronjeture, then the merge step would take plae, and only if no graphs ofthe merged type ould be produed would an attempt be made to provethe onjeture. If a generalisation or speialisation task was at the top ofthe agenda, it would be arried out and some e�ort expended to generateexamples of the new onept.Fous onepts ould be spei�ed by the user. GT restrited theory for-mation to only those tasks involving the fous onept, whih meant thatonly speialisations or generalisations of the onept and onjetures involv-ing the onept were produed. GT rated ertain newly formed onepts asuninteresting and disarded them. For instane, if a onept was a gener-alisation of a fous onept, but all the graphs satisfying the new oneptwere examples of the fous onept, the new onept was disarded. Also, ifonly a few graphs ould be generated with a newly formed property, the newonept was disarded.



266 13. Related Work13.2.2 The SCOT ProgramReently, a new theory formation program working in graph theory alledSCOT [Pistori & Wainer 99℄ has been implemented. SCOT has a more �ne-grained representation of onepts than GT and an de�ne onepts like utvertex whih was not possible for GT. SCOT is said in [Pistori & Wainer 99℄to follow in the footsteps of ARE, HR and Cyrano and it works very muh likeHR, using prodution rules based on ideas from Bakus' work on funtionalprogramming [Bakus 87℄ to invent new onepts. SCOT also uses some ofthe heuristi measures that HR employs, inluding the omplexity and thenumber of onjetures measure. Furthermore, SCOT will perform fairly om-pliated example analysis to determine if a onept is interesting beause itsexamples are interesting (whih is similar to, but more advaned than HR'sappliability measure).SCOT has a distributed arhiteture to improve eÆieny and using 14mahines for an 8-hour run, it produes around 700 onepts. These on-tain many lassially interesting graph theory onepts suh as omplete andonneted graphs, yles, trees and ut edges. Due to the reentness of thisprojet, we have not yet fully ompared SCOT with HR.13.2.3 A Qualitative Comparison of GT and HRHR has muh in ommon with the GT program beause it performs manyof the funtions that HR performs, in partiular onept formation, onje-ture making and theorem proving. GT does not perform any ounterexample�nding, although Epstein planned to implement this ability.HR and GT di�er mostly in the way they represent onepts. GT useda reursive representation of graph types, whih enabled fast generation ofgraphs to provide empirial evidene. In ontrast, HR's de�nitions are delar-ative { the de�nition an be used to deide when a graph is of a partiulartype, but the only method HR has to produe a graph of that type is togenerate and test.HR and GT both use omposition to form new onepts (in GT, it isalled \merging" two onepts) and HR's other prodution rules have someoverlap with GT's speialisation proedure. However, the representation ofonepts limits GT's onept formation beause the onepts produed musthave a reursive de�nition. This also limits the domains that GT an workin. It is diÆult to see how a program so dependent on reursive de�nitionsould be used with muh e�et in, say, group theory. However, an appliationto number theory is ertainly possible, as many number theory onepts anbe de�ned reursively.As with AM, GT and HR have very similar onjeture making tehniques.In partiular, tasks (ii), (iii) and (iv) that GT undertakes (as stated on page265) were to �nd impliation, equivalene and non-existene onjetures re-spetively.



13.2 A Comparison of HR and the GT Program 267The use of fous onepts and the agenda mehanism in GT are morereminisent of AM than HR. However, when we apply HR to disovery tasksin future { as disussed later in x14.2.1 { it may be neessary to enable fousonepts so that a theory evolves around onepts hosen by the user. GT hassome heuristi measures for onepts whih improve the likelihood that a on-jeture involving them will be interesting. GT then hooses the best oneptsand starts a task to �nd onjetures. This is di�erent from HR, whih doesn'thoose onepts to make interesting onjetures, but rather uses onjeturesto assess the interestingness of onepts. GT also uses intrinsi measures ofonepts, in partiular the appliability of a onept, whih HR also uses.However, GT uses these only to disard dull onepts and not to order theonepts in terms of interestingness as HR does.As well as allowing the generation of examples, the representation ofgraphs also allowed theorem proving. Beause HR uses a third party theo-rem prover, its theorem proving abilities are more powerful than GT's, whihould only use a few pre-de�ned tehniques involving bakground knowledgeabout numbers whih apply in partiular irumstanes. Also, as HR is nottied to a partiular format for its de�nitions, we ould enable HR to use atheorem prover other than Otter if this was needed.13.2.4 A Quantitative Comparison of GT and HRWe an ompare the graph theory onepts whih GT re-invented with thosere-invented by HR. As mentioned previously, Epstein showed that 42 graphtypes ould be represented in GT's format. In [Epstein 91℄ Epstein statesthat of the 42, 10 are disovered by GT during atual runs. In Table 13.3 weprovide these 10 onepts and indiate whether HR also re-invents them.Graph type disovered by GT Coveredby HREdgeless graph YesConneted graph GivenAyli graph NoTree NoLoopfree graph YesChain NoStar YesOdd regular graph NoGraph on odd number of verties NoBipartite graph NoTable 13.3 Graph types re-invented by GTHR only re-invents three graph types that GT disovers (33%). There aremany reasons for this low sore. Firstly, HR will only invent a graph type



268 13. Related Workthat GT overed if the graph has both a reursive de�nition as well as adelarative de�nition based on the edges and nodes. A good example is stargraphs. GT de�ned this onept with the reursive de�nition given above,but HR de�nes star graphs di�erently { onneted graphs whih have a nodewhih is on all edges. It takes a little thought to realise that this de�nes onlystar graphs.Seondly, some of the graph types involve onepts from number theory,whih GT is provided with beforehand. The version of HR we have usedfor these experiments is only apable of working in one domain at a time.However, Graham Steel has extended HR to work in both graph theory andnumber theory at the same time [Steel 99℄ whih we disuss in x14.3.2. Thisinreases HR's overage of graph types involving notions from number theory.Hene, with this addition, HR would re-invent two more onepts, odd regulargraphs and graphs with an odd number of verties.Thirdly, HR has no notion of subgraphs, hene it annot �nd the on-ept of loopfree graphs, beause these are graphs whih have no subgraphswhih are loops. Similarly, inventing the onept of bipartite graphs requiresknowledge of subgraphs. For reasons given in x5.3 we do not provide HR withthe deomposition of graphs into subgraphs as an initial onept, but this isentirely possible and would enhane HR's abilities in graph theory a greatdeal.Even though HR only overs two graph types disovered by GT, of the32 graph types given in [Epstein 91℄ whih GT does not re-invent, HR re-invents four. These are the onept of yles, omplete graphs, graphs withn verties and graphs with n edges { the latter two being parameterised bysome n. Those graph types not overed by HR or GT involve notions ofolouring the nodes (whih we ould supply to HR as an initial onept) andmore number theoreti notions, suh as graphs with an even number of edges.As disussed in [Epstein 91℄, GT also re-invents some graph theory on-jetures and Epstein presents these four as examples:� Every tree is ayli.� Every tree is onneted.� The set of ayli, onneted graphs is preisely the set of trees.� There are no odd-regular graphs on an odd number of verties.HR annot re-invent any of these onjetures beause it annot form theonepts they disuss, for the reasons given above. In summary, GT outper-forms HR in terms of the lassially interesting results it re-invents, but HRis more general. The lak of reursion, lak of subgraphs and lak of rossdomain ability in HR are ritial to its bad performane in graph theory.



13.3 A Comparison of HR and the IL Program 26913.3 A Comparison of HR and the IL ProgramTo reap from Chapter 2, the IL programwas written by Mihael Sims in 1989and was designed to �nd an operator on number types whih satis�ed ertainrequirements supplied by the user. For example, IL was asked to �nd a way ofmultiplying omplex numbers so that they satis�ed the �eld axioms. IL useda generate, prune and prove tehnique (GPP), whereby a plausible operatorwas produed and heked against a set of examples. Only if it passed thistest would IL attempt to prove that the operator performed as the userrequired. Using this tehnique, IL suessfully redisovered the multipliationof omplex numbers and of Conway (or surreal) numbers [Conway 76℄.13.3.1 How IL WorkedIn the generate phase of GPP, a set of andidate expressions for the operatorwere produed. Eah time the generate phase was invoked, the omplexityof the operators produed was inreased. Complexity level zero andidateswere simply the real numbers present in the input to the operator and theirnegations. Complexity level one andidates used what Sims alls `ombiners'to take parts of the input and generate new expressions. These ombinerswere spei�ed by the user and, in the ase of omplex numbers, they ouldsimply add, subtrat or multiply two reals. Candidates from omplexity levelx would have used suh ombiners x times. Table 13.4 gives some examplesof operator andidates at omplexity levels 0 and 1. Note that the omplexnumber a+ bi is represented as (a; b).some examples of some examples oflevel 0 andidates level 1 andidates(a; b) � (; d) = f(a; a); (a; b); (b; a); (b; b); f(a+ a; a+ a); (a+ a; a+ b);(�a; a); (a;�a); (�a; b); (�a+ a; a+ a); (�a+ a; a� b);(a;�b); (a; ); (b; ); et:g (a � a; a � a); (a � a; a � b); et:gTable 13.4 Some of IL's operator andidates at omplexity levels 0 and 1Sims used the heuristi that the operator andidates should ontain ex-pressions with similar dimensions to the operator IL was looking for, e.g. ifthe operator was multiplying two omplex numbers together, the expressionsshould multiply two reals together, so that a � b was more favoured thana � b � .The prune phase disarded operators from the set produed in the gen-erate phase. Eah spei�ation the user gave IL about how the operator wasto perform was turned into a separate onstraint. For eah onstraint, ILwould generate a set of pruning examples using information extrated fromthe onstraint itself. Eah pruning example was a triple of omplex numbers,the �rst two of whih multiplied to give the third. To pass the pruning test,



270 13. Related Worka andidate operator had to multiply the �rst two numbers of every prun-ing example to give the third. If too many andidate operators passed theprune phase, IL would generate more pruning examples for eah onstraintand re-run the prune phase to possibly disard more operators. If the prunephase removed all the operators, IL would return to the generate phase andprodue operators from the next omplexity level.However, if there were just a small number of andidates whih passed theprune stage, IL would take eah one in turn and move on to the prove phase.IL's theorem prover, VERIFY, attempted to prove that every spei�ationgiven by the user was met by the proposed operator. VERIFY used naturaldedution tehniques inluding:� Choosing and verifying numbers for tasks. For example, to satisfy the �eldaxioms, there needs to be an identity with respet to the andidate operator.IL ould hoose (1; 0) for this task, and verify that 8(x; y) 2 C; (1; 0)�(x; y) =(x; y) � (1; 0) = (x; y). The veri�ation was done using theorems IL was givenabout the real numbers.� Expanding de�nitions.� Using explanation based learning [Sims 98℄ to generalise the proof of apartiular ase to a proof of the general ase. For example, the �eld axiomsrequire that eah omplex number has a multipliative inverse with respetto the identity { hosen as (1; 0) previously. VERIFY ould turn the proofthat, for example, the inverse of (1; 1) is (1=2;�1=2) into the general proofthat the inverse of (a; b) is ( aa2+b2 ; �ba2+b2 ).IL suessfully re-invented the orret way of multiplying omplex num-bers. Also, it re-invented the multipliation of Conway numbers, whih Con-way himself states was a diÆult task [Conway 76℄.13.3.2 A Qualitative Comparison of IL and HRWe have applied HR to problems similar in nature to those solved by IL:we asked HR to produe a onept whih ategorised the examples in a wayspei�ed by the user (as disussed in x12.1). To do this, HR employed similarmethods to the generate and prune stages of IL. However, HR does not followIL in proving that the onept performs orretly as it only has to demonstratethat the onept it has found produes the orret ategorisation.There are some di�erenes between the two approahes. HR generatessingle examples, as opposed to a set of possible andidates by IL. Also, HRnever prunes any onept ompletely, but the invariane and disriminationmeasures e�etively stop the further development of any onept whih soresbadly. If none of the andidates whih survived the prune stage ould beproved to satisfy the onditions on the operator in IL, more andidates were



13.4 A Comparison of HR and Bagai et al's Program 271produed based on those whih passed the previous prune stage. Similarly,HR only builds upon those soring well for invariane and disrimination.IL's onept formation is determined by the funtions given to it by theuser, suh as addition of reals. Whereas the user an tell HR not to usepartiular rules, there is no mehanism by whih the user an speify a newprodution rule, although this would be a useful tool.13.4 A Comparison of HR and Bagai et al's ProgramTo reap from Chapter 2, Bagai et al wrote a program in 1993 designed to�nd theorems in plane geometry. This was based on work by Chou [Chou 85℄whih used Wu's powerful deision proedure [Wu 84℄ to �nd new results inplane geometry. The program performed an exhaustive searh over a spae ofplane geometry diagrams represented in a �rst order way. For eah diagram,the onjeture was made that the diagram was inonsistent with the axiomsof plane geometry (i.e. it ouldn't be drawn) and the onjeture was passedto a version of Wu's theorem prover implemented by Chou [Chou 84℄.13.4.1 How Bagai et al's Program WorkedDiagrams were represented as a set of points, a set of lines and a set ofrelations between lines and points { namely a point being on a line and twolines being parallel { using a �rst order language. We presented Figure 2.2on page 16 as an example of this representation.The program had a very simple ontrol struture:� Choose the next diagram (whih was an empty diagram initially).� Build a new diagram from it.� Attempt to prove that the diagram is inonsistent with the axioms of planegeometry (i.e. that the diagram annot be drawn).This was repeated until told to stop by the user and the program produed aset of theorems about whih diagrams annot be drawn. New diagrams werebuilt from old ones by either adding a point or a line or adding a new relationbetween points/lines already there.The program had tehniques to redue the number of times the systemused the theorem prover. Firstly, only onsistent diagrams were built upon,as a diagram whih was an extension of an inonsistent one would itself beinonsistent. By also restriting to only adding single relations, if the diagramprodued was inonsistent, the new relation must have aused the inonsis-teny. This enabled better presentation of the theorems. For example, giventhe parallelogram diagram in Figure 2.2 on page 16, if the ondition that thediagonals are parallel was added, this would ause an inonsisteny. As this



272 13. Related Workwas aused by the new relation, instead of just stating that a parallelogramwith parallel diagonals annot be drawn, the system ould say that:� Given a parallelogram, then the diagonals annot be parallel.(We have paraphrased from the �rst order presentation given by the pro-gram). Another way to redue the time spent using the theorem prover wasto avoid proving the inonsisteny of a diagram whih was isomorphi to aprevious one. Two diagrams were isomorphi if a permutation of the pointsof the �rst produed the seond. To get around this problem, whenever a di-agram was built, all of its isomorphi diagrams were also built, so that theyould be reognised if re-onstruted by a di�erent route later on. Also, tout down on the ourrenes of later theorems whih implied earlier ones, theprogram used a breadth �rst searh where a step ould only be the additionof a single new point or line or the addition of a single new relation. Hene,the most general diagrams were onstruted before the more spei� ones, sothat the most general versions of theorems were produed �rst.13.4.2 A Qualitative Comparison of HR and Bagai et al'sProgramBagai el al's system is similar to the way in whih MCune uses the EQPand Otter theorem provers to �nd new results in �nite algebrai systems[MCune 93℄, i.e. heavily reliant on an eÆient theorem prover. As HR alsouses a theorem prover, it has this in ommon with the Bagai et al system.However, HR is less reliant on the prover to form theories { it an workwithout proving any onjetures, whereas the Bagai et al system is entirelydependent on the theorem prover.Also, isomorphism is a problem for the system beause the same diagraman be made by di�erent routes. The program generates all isomorphi dia-grams whenever a new one is introdued so that it an reognise them later,utting down the use of the theorem prover. In HR, the same onept an bereahed by di�erent paths. In some ases this leads to an interesting equiva-lene onjeture, but in other ases the onjeture is simply an instantiationof a tautology and very dull. HR annot determine all the equivalent on-epts for a given onept, so to ut down the number of tautology onjeturesourring, HR uses a forbidden path mehanism to restrit its searh.There are many di�erenes between the two programs, inluding obviousones suh as the domains they work in and the searh they perform (HR'sbest �rst searh versus an exhaustive searh). The onept formation in theBagai et al program is limited to the introdution of new points, lines orrelations (whih is not mirrored by HR, as the objets it works with annotbe easily extended into new ones) and the addition of new relations betweenpoints and lines (whih is mirrored by HR's ompose prodution rule).



13.5 A Comparison of HR and the GraÆti Program 27313.5 A Comparison of HR and the GraÆti ProgramTo reap again from Chapter 2, the GraÆti program was written by SiemionFajtlowiz in 1988 and has been used ontinuously sine then to �nd on-jetures in graph theory. The onjetures it �nds are inequalities betweensummations of graph theory invariants (i.e. that for every graph, one sumof invariants is less than or equal to another sum). The onjetures madeby GraÆti have been proved and disproved by many experts from graphtheory and over 60 papers address the onjetures it made, for example[Erd}os et al. 91℄ and [Chung 88℄. Fajtlowiz maintains a doument, alledthe Writing on the Wall [Fajtlowiz 99℄, in whih he reords the onjeturesGraÆti produes whih he annot prove easily, along with a ommentary onthe attempts to prove them and other thoughts about graph theory and theautomation of onjeture making. Conjetures from the Writing on the Wallare periodially sent to a mailing list of graph theorists.13.5.1 How GraÆti WorksGraÆti is supplied with a set of well known graph theory invariants repre-sented as piees of program ode able to alulate the invariant for any givengraph. It is also supplied with a set of graphs whih have been ounterex-amples to previous onjetures, whih therefore provide a good test bed forheking onjetures empirially. GraÆti also has a reord of all previous on-jetures it has made whih were proved or remain open (Fajtlowiz removesby hand any onjetures whih are subsequently disproved). GraÆti's on-ept formation amounts to adding together two (or on rare oasions three)invariants. It searhes the spae of summations to �nd onjetures of theform: 8 G; s1(G) � s2(G)where s1 and s2 are summations of invariants. It uses the example graphs todisard any onjeture whih is not true of some of the graphs.This empirial hek is time onsuming, so GraÆti employs two teh-niques, alled the beagle and dalmation heuristis, to disard ertain trivialor weak onjetures before the empirial test:� The beagle heuristi disards many trivially obvious theorems, inludingresults of the form: invariant1(G) � invariant1(G) + 1: Note that invariantswhih are a previous invariant with the addition of a onstant are used tomake stronger onjetures. The beagle heuristi uses a semanti tree of on-epts (also supplied by Fajtlowiz) to measure how lose the left hand andright hand terms are in a onjeture, and rejets those where the sides aresemantially very similar.



274 13. Related Work� The dalmation heuristi heks that a onjeture says something strongerthan those made by GraÆti previously. To use the dalmation test for theonjeture: p(G) � q(G), where p and q are sums of invariants, GraÆti �rstollates all onjetures it has ever made of the form p(G) � ri(G). Then, topass the dalmation test, there must be a graphG0 in GraÆti's database whihfor all the ri, q(G0) � ri(G0). This means that, for at least one graph, q(G)gives a stronger bound for p(G) than any invariant suggested by a previousonjeture. Therefore the onjeture p(G) � q(G) does indeed say somethingnew about GraÆti's graphs.A third eÆieny tehnique is to remove by hand any onjetures fromthe set of previous ones stored by GraÆti whih are subsumed by a newonjeture. For example, Fajtlowiz would move the old onjeture i(G) �j(G) + k(G) to a seondary database, if the onjeture i(G) � j(G) wasmade. However, if the latter onjeture was subsequently disproved, the for-mer onjeture would be re-instated. Removing the onjetures means thatthe dalmation heuristi runs more eÆiently.As Fajtlowiz adds onepts to GraÆti's database, the Writing on theWall reets the new input, e.g. onjetures 73 to 90 involve the oordinates ofa graph. Fajtlowiz an also diret GraÆti's searh by speifying a partiulartype of graph he is interested in. For example, onjetures 43 to 62 are aboutregular graphs. To enable this kind of diretion, Fajtlowiz informs GraÆti ofthe lassi�ation of its graphs, into, say, regular and irregular graphs. Then,if GraÆti bases its onjetures on only the empirial evidene supplied bythe regular graphs, the onjetures will only be about those graphs. To stopGraÆti re-making all of its previous onjetures, the eho heuristi usessemanti information about whih graph types are a subset of whih others,and rejets onjetures about the hosen type of graph if there is a supersetof graphs for whih the onjeture is also true (indiating a more generalonjeture).GraÆti was not implemented to model theory formation in a general way,but rather as a tool for onstruting interesting onjetures in graph theory.To this end, GraÆti has been extremely suessful. The suess is somewhatdue to the fat that the onjetures produed are (a) simply stated, (b)easy to hek empirially, () often true, (d) often diÆult to resolve and (e)used to gain eÆieny in graph theory algorithms. This last point is verypertinent: alulating invariants is omputationally expensive, so any boundon their value ould be very useful and this is one of the main reasons so manymathematiians have looked at GraÆti's onjetures. However, this shouldn'tdetrat from GraÆti as Fajtlowiz has shown that automated approahes toonjeture making in mathematis an be attrative to mathematiians.



13.5 A Comparison of HR and the GraÆti Program 27513.5.2 A Qualitative Comparison of GraÆti and HROur work using the Enylopedia of Integer Sequenes to suggest onje-tures about number types ompares losely with GraÆti. GraÆti has a user-supplied knowledge base of some of the most interesting onepts in graphtheory. Similarly, the Enylopedia is a knowledge base of some of the mostinteresting onepts in number theory (as well as thousands of onepts frommany other domains). A di�erene between the knowledge bases is that Graf-�ti has ode for alulating invariants for any graph, whereas the Enylope-dia is just a database with omputer algebra ode for only some entries.GraÆti produes simply stated onjetures: that one summation of graphtheory invariants is less than another summation, for all graphs. Similarly,our system produes simply stated onjetures: that one integer sequene isa sub-sequene of another, or that two integer sequenes are disjoint, and soon. One di�erene between the programs is the use of pruning methods: HRdisards onjetures after the empirial test, whereas GraÆti disards someonjetures before the empirial test. Using more semanti information fromthe Enylopedia, we hope to enable HR to use similar heuristis to GraÆtifor pruning onjetures before testing them.Our number theory onjetures have not turned out to be as useful ordiÆult to resolve as those produed by GraÆti. Also, as our aim has beento model theory formation, rather than to add to mathematis, we have nothad time to pursue all of the results HR has produed, whereas Fajtlowizposts GraÆti's onjetures to a mailing list of eager graph theorists.HR's onept formation, onjeture making and assessment of interest-ingness are all muh riher than those used by GraÆti. GraÆti's oneptformation amounts to the addition of invariants and it an only make on-jetures of one type. Larson speulates in [Larson 99℄ about giving GraÆtithe ability to multiply invariants, but this hasn't been implemented to ourknowledge. It seems that giving GraÆti more ways to ombine invariants maymake the spae of onjetures too large to �nd meaningful examples and mayredue the utility of the onjetures produed { if they no longer help witheÆieny problems, their appeal may derease. Note that the beagle heuristiis very similar to HR's surprisingness measure, as it disards a onjeture ifthe left hand and right hand side are semantially similar.HR does not use the less-than-or-equal-to onept in graph theory, so itannot reprodue any onjetures made by GraÆti, although a ross domainversion of HR (as we shall disuss in x14.3.2) may be able to. In [Larson 99℄,Larson states that GraÆti has been used in number theory and that thetehniques employed work well. This would give us a way to ompare HR andGraÆti. However, no results from number theory are supplied and we havenot managed to �nd any elsewhere. We are also septial about the generalityof GraÆti's tehniques { while the onjetures it �nds are important in graphtheory, it is doubtful whether suh inequality onjetures would have the sameimpat in number theory or algebrai domains suh as group theory.



276 13. Related Work13.6 A Comparison of HR and the Progol ProgramAs stated throughout this book, even though we have experimented withthe invariane and disrimination measures to drive theory formation so thatHR eventually �nds a onept ahieving our goals, it is beyond the sope ofthis book to use HR to perform mahine learning tasks. However, we havebeome aware of an overlap in onept formation tehniques between HRand the Indutive Logi Programming approah as exempli�ed by the Progolprogram [Muggleton 95℄. We wish to highlight the similarities in terms of theonepts whih eah an produe. This omparison has also been given in[Colton et al. 00b℄ and in more detail in [Colton 02a℄. The details of Progolgiven in x2.4.2 will suÆe for our disussion here.Progol will learn a de�nition for a onept given a set of prediates asbakground knowledge and a set of positive and negative examples for theonept. There is a striking similarity between the onepts Progol and HRan reah. We highlight this using examples from number theory. However,HR has reently been enabled to work in \train theory", where the objets ofinterest are trains, the subobjets are arriages and objets in arriages et.and the relations between subobjets are two arriages being onneted, anobjet being arried in a arriage, and so on. This is a domain for mahinelearning suggested by [Mihalski & Larson 77℄ in whih Progol performs welland we wished to test HR in this domain. However, the appliation of HRto train theory is beyond the sope of this book, as we are disussing math-ematial theory formation here.Firstly, as disussed in x2.4.2, Progol uses inverse resolution to inventprediates whih ould have been resolved to produe the bakground andexample prediates. This produes onepts with onjuntions of prediates,prediates with repeated variables, and onjuntions of prediates whih on-tain the same variable. We have found that this overs the onepts thatHR an produe with its ompose, math and exists prodution rules. Forexample, given the bakground onepts of integers and multipliation HRprodues this de�nition for square numbers:[n℄ : 9 a (a� a = n)and Progol produes this de�nition:square(N) :- integer(M), multiply(N,M,M).Seondly, the user an set mode delarations in Progol whih desribewhere bakground prediates an appear in the invented prediates. Modedelarations also speify whether variables beome instantiated and whethernegation of prediates is allowed. The ability to instantiate variables orre-sponds exatly with HR's split prodution rule, and the ability to negateprediates orresponds with the negate rule. A ombination of negated andexistentially quanti�ed prediates orresponds to onepts produed by HR's



13.7 Summary 277forall prodution rule. For example, HR produes this de�nition for evennumbers: [n℄ : 2jnSimilarly, given the bakground prediate of divisors and allowed to instan-tiate variables, Progol produes this de�nition:even(N) :- divisor(N,2).Finally, we found that if we supply two extra prediates as bakgroundknowledge from set theory, namely the standard Prolog prediates of setofand length, Progol an over onepts produed by the size prodution rule.For example, HR de�nes the � funtion (number of divisors) as:[n; t℄ : t = jfa : ajngjand Progol produes this equivalent de�nition:tau(N,T) :- setof(M,divisor(N,M),L), length(L,T).Therefore, for eah of HR's prodution rules, we have found a way for Progolto produe onepts of a similar nature. Interestingly, to over all the produ-tion rules requires three di�erent aspets of Progol's funtionality. Only oneof HR's prodution rules orresponds to additional bakground knowledge.As the six others do not orrespond to bakground knowledge, this adds toour laim that the prodution rules are very general. We are urrently un-dertaking a quantitative assessment of HR and Progol to enable us to betterompare and ontrast issues suh as overage, eÆieny and ontrol. It islear that Progol has greater overage of onepts than HR. In partiular,Progol an de�ne onepts reursively by speifying a base ase and a stepase. HR annot yet produe suh onepts, although we plan to implementa \path" prodution rule to enable this (as disussed later in x14.1.1).13.7 SummaryWe have ompared and ontrasted HR with four theory formation programs, amathematial disovery program and a mahine learning program in order toput the work presented in this book into ontext. To summarise our �ndings,we note that:� There is muh overlap in the onept formation tehniques. In partiular,the omposition of onepts and the extration of objets whih have a smallnumber of subobjets (as ahieved by HR's size and split rules) are ommonto many programs. There is also muh overlap between the onepts pro-dued by HR and the Progol mahine learning program. There is even moreoverlap in the types of onjetures that the theory formation programs make.Impliation, equivalene and non-existene onjetures are made by many ofthe programs.



278 13. Related Work� Most programs, inluding HR, use a variety of ways to assess the on-epts and onjetures they produe, so that a best �rst searh an beimplemented. This indiates, as we highlight in [Colton & Bundy 99℄ and[Colton et al. 00d℄ that the notion of interestingness is very important inautomated theory formation, due to the size of the spae of onepts andonjetures whih is searhed. Some programs assume that the user is only in-terested in onepts of one type (whereas in HR the user an reward oneptswhih sore well or badly for any measure). The appliability and omplexitymeasures HR has are also very ommon, it seems to be aepted that on-epts with few examples or ompliated de�nitions are less interesting. Also,measures of surprisingness, either for onepts or onjetures are ommon inthe programs.� In some of the programs, the user is able to speify whih onepts areinteresting, so that theory formation revolves around these onept. We havea more autonomous model of theory formation where this kind of diretionis not used, as we are interested in how theories develop unhindered givenvarious starting parameters.� The use of a human-maintained knowledge base of mathematial oneptsis very useful for the prodution of onjetures whih are interesting to math-ematiians. This is shown by the GraÆti program and HR's use of the En-ylopedia of Integer Sequenes. Both programs use both information aboutthe relationships between onepts and examples of the onepts.� HR works in more domains than the theory formation programs desribedabove, beause it works in many �nite algebrai systems as well as numbertheory and graph theory. In fat, HR's model of theory formation is the �rstto be seriously2 applied to more than one domain.� HR's model of theory formation is simpler in many respets than thoseimplemented in other programs. HR starts with only a few initial onepts,uses only seven onept onstrution tehniques and has only 18 measures ofinterestingness (11 for onepts, 7 for onjetures). In ontrast, AM startedwith more heuristis than the number of onepts it invented in a session.However, even with a simpler model, HR still re-disovers 90% of the oneptsfound by AM and some of those found by GT. In addition, HR has foundfour times as many lassially interesting onepts as AM, and four graphtheory onepts not re-invented by GT.� HR performs more autonomously than AM and GT, whih both allow theuser to diret the searh by speifying fous onepts. In AM, the user ansupply optimised algorithms for alulations, whih will also a�et the searh.2 The appliation of AM to geometry was never more than an experiment and wehave yet to see results from the appliation of GraÆti to number theory.



13.7 Summary 279� HR and the Bagai et al program are the only ones to use a third partytheorem prover, whih helps to improve the larity of the theory formationproess. This is beause, in the GT and IL programs, for instane, the theoryformation was muh more geared to enabling the theorem prover to workeÆiently. HR is the only program to use a third party ounterexample �nder.Unfortunately, none of the four theory formation programs desribedabove are being atively developed and there seems little likelihood of workstarting again on those projets in the near future. However, Chou is on-tinuing to improve on geometry theorem provers and uses them to makedisoveries [Chou et al. 00℄ in the same fashion as the program from Bagai etal. Also, onjeture making is beginning to �nd a plae in automated theoremproving [Zhang 99℄ and we hope this will fuel further researh. We hope theontinuing use of GraÆti, along with the urrent development of the SCOTprogram desribed briey above and our work on HR marks a resurgene ofinterest in the �eld of automated theory formation in mathematis.





14. Further Work
4, 5, 7, 9, 13, 15, 19, 21, 25, 31, 33, 39, 43, 45, 49, 55, 61, 63, 69, : : :A052147. Primes + 2.There are many new diretions in whih we ould take this projet, and in-deed many diretions whih we have taken that have not been reported inthis book. In this hapter, we �rst briey desribe additional work whihould improve HR's urrent funtionality by enhaning it with new abilities.Following this, we disuss areas to whih theory formation ould be applied,namely automated onjeture making, onstraint satisfation problems, ma-hine learning and automated theorem proving. We also explore some broadertheoretial developments we ould pursue to further investigate automatedtheory formation. Funded by EPSRC grants GR/M98012 [Colton et al. 99a℄and GR/R84559/01 [MCasland et al. 02℄, the HR projet has ontinued interms of both new appliations and new funtionality. We onlude with somereferenes to papers whih disuss these projets.14.1 Additional Theory Formation AbilitiesThe version of HR we have disussed throughout the book is the Prolog im-plementation, whih has been developed from version 0.1 to version 1.11. Wehave begun to implement HR version 2.1 in Java, whih has many improve-ments to the ore implementation of HR, inluding a better representation ofonepts. In partiular, not only does HR 2.1 reord the data table and on-strution history of eah onept, it also maintains a set of prediates for eahone, with the onjuntion of the prediates making up the de�nition for theonept. The additional information enables HR 2.1 to perform more intelli-gently, whih we hope will improve matters when we apply theory formationtehniques to theorem proving, as disussed in x14.2.4. Other improvementswe hope to implement inlude additional prodution rules, improved presen-tation of theories and more onerted e�orts in proving onjetures, eah ofwhih is disussed briey below.



282 14. Further Work14.1.1 Additional Prodution RulesConepts where objets or subobjets are identi�ed whih sore a maximal orminimal value for a partiular numerial funtion are ommon in mathemat-is. Examples inlude nodes with a maximal weight in graph theory, elementswith a maximal order in the de�nition of yli groups, and highly ompositenumbers [Hardy 27℄, whih have more divisors than any smaller integer. In[Steel 99℄ the \extreme" prodution rule was introdued whih generalisedthis notion and we have re-implemented this in version 2.1 of HR.We mentioned in Chapter 3 that onstruting maps and sequenes orseries of objets (suh as integer sequenes and series of groups like the derivedseries) is ommon in mathematial domains. We disuss in x14.3.2 below howa proposed \embed" prodution rule ould be used to introdue maps and wealso note that the size prodution rule produes onepts whih map objetsto integers in number theory. Another prodution rule, whih we ould all the\path" rule would be needed to introdue onepts involving sequenes to atheory. Note that, in our work with integer sequenes, we have taken oneptssuh as number types and interpreted them as integer sequenes. However,the path prodution rule would be able to invent onepts with reursivede�nitions, inluding sequenes of groups and graphs. The parameterisationswould inlude information about whih objets were to be the base ases, andwhih onept would be used to propagate the sequene. For example, if thebase ase was the integer 36, and the onept used was the � funtion, thepath prodution rule would repeatedly ount the number of divisors until thesequene repeated (or until a given number of terms had been alulated).The sequene we would see is: 36! 9! 3! 2.Similarly, any onept in group theory whih mapped one element toanother ould be used in the path prodution rule, and we would see orbitsof elements emerging. In earlier versions of HR, we had a similar produtionrule alled the \fold" rule. However, this was not general enough and weremoved it pending more theoretial development of the notion of paths. Wehave not yet implemented the general version.14.1.2 Improved Presentational AspetsIn the present Prolog version of HR, little attention is paid to the presentationof theories. The output is restrited to ASCII text de�nitions of oneptsand onjeture statements, and diagrams produed by the DOT program[Koutso�os & North 98℄ whih portray the onstrution history of a onept.In fat, earlier versions were equipped with muh better presentation skills,but this funtionality has not been maintained. In partiular, HR was ableto output the onepts, examples and onjetures it formed in LATEX, thestandard mathematial typesetting language. It was then able to mark upthe LATEX sripts and present them on sreen. We hope to re-implement this



14.1 Additional Theory Formation Abilities 283ability, beause presentation of theories is an important ability for a theoryformation program.With the improved representation of onepts disussed above, HR will beable to use standard re-writing tehniques to improve the larity of oneptde�nitions. For example, onepts of the following form:[a; b℄ : �(�P (a; b) & �Q(a; b))will be written as: [a; b℄ : P (a; b) or Q(a; b)Similarly, onepts in this format:[a; b℄ : �  s.t. � P (a; b; )will be written as: [a; b℄ : 8 ; P (a; b; )and so on. Note that suh re-writing tehniques may also be used to improvethe internal representation of the onepts.14.1.3 Further Possibilities for Making and Settling ConjeturesAt present, if HR annot settle a theorem immediately, it will try to dis-prove it whenever a new example is introdued later as a ounterexampleto a di�erent onjeture. However, HR will not put more e�ort later intoattempting to prove the onjeture. It would be better if HR ould return tothe open onjeture after further theory formation and attempt a proof us-ing the additional information gained. The additional theory formation mayhave brought to light theorems whih an be used as lemmas in proving theoriginal onjeture. We have had many other ideas on how to improve HR'sattempts to settle onjetures, whih inlude the following:� Highlight those open prime impliates whih, if HR ould prove they weretrue, ould be used in turn to prove many theorems, i.e. identify those keyresults from whih many other results would follow. This ould be automatedby assuming a result is true and showing that, if true, many other onjeturesfollow as a onsequene. The andidate onjeture ould be the one fromwhih most other results follow, but there are other alternatives whih weplan to look into.� Transformation of equivalene onjetures using previously proved equiv-alene onjetures. For example, if HR was asked to prove the onje-ture P (a; b) () Q(a; b) but was having diÆulty and it had alreadyproved the theorem P (a; b) () R(a; b), then if it proved the onjeture:P (a; b) () R(a; b) the original onjeture would follow as a trivial orollary.The latter onjeture may be easier to prove.



284 14. Further Work� Use previously proved results as lemmas without proof when proving a newonjeture. We have done some preliminary experimentation in this area, andwe found an example onjeture where supplying a previously proved theoremredued the time taken by Otter to prove the onjeture from 70 to just 9seonds. However, we found that in general, adding a lemma slowed downthe proofs, on�rming the fat that hoosing the right lemma is a diÆultproblem [Barker-Plummer 92℄.� Using other theorem provers and model generators. Otter and MACE arewell suited to the algebras that HR works with. However, we also want toexperiment with di�erent theorem provers suh as Vampire [Voronkov 95℄and SPASS [Weidenbah 99℄. Also, the new path prodution rule disussedabove will produe reursive de�nitions for onepts. Therefore, we hope tolink HR to indutive theorem provers suh as �Clam [Rihardson et al. 98℄whih ould take advantage of the reursive nature of the de�nitions. In[Zimmer et al. 02℄, we report on the integration of HR into the MathWebsystem [Franke et al. 99℄, giving HR aess to many other provers.As well as expending more e�ort trying to prove diÆult onjetures,we also hope to extend the range of onjeture types that HR an form. Inpartiular, we hope to employ HR to �nd and prove alternative axiomati-sations for the algebrai system being looked at. For example, as disussedin [MCune 93℄, Otter has been used to prove the equivalene of di�erentaxiomatisations of group theory and the standard axiomatisation. We hopethat HR ould invent similar axiomatisations for algebrai systems and useOtter to prove that they do indeed de�ne groups (and only groups). Othertypes of onjeture will inlude proving that spei� subsets of objets formalgebrai systems themselves under given operations. For example, when HRinvents the entre of a group, it ould use Otter to prove that the entre itselfforms a group under the multipliation inherited from the parent group.14.2 The Appliation of Theory FormationThe ore implementation of HR an be improved in many ways, some ofwhih have been desribed above. However, the projet is advaned enoughto onsider applying HR to other problem areas. Detailed reporting of theappliation of HR to spei� problems is beyond the sope of this book,the purpose of whih was to design, implement and assess a program whihmodels theory formation. However, we an disuss future possibilities forapplying HR to new areas and briey disuss the results from some initialtesting. Firstly, we look at the possibility of applying HR to mathematisby using it to form onjetures of a standard whih would be interestingto mathematiians. Following this, we disuss how HR ould be applied tothree areas of Arti�ial Intelligene, namely onstraint satisfation problems,mahine learning and automated theorem proving.



14.2 The Appliation of Theory Formation 28514.2.1 Automated Conjeture Making in MathematisIn [Vald�es-P�erez 99℄, theory formation programs are lassed as either systemsimplemented to model some aspet of sienti� theory formation or systemsimplemented to assist expert users in disovering new fats about a domain.By using HR in number theory to invent new onepts and make interestingonjetures, we have shown that HR an be lassed as both a program whihmodels theory formation and a program able to assist in disovery tasks.We hope to further develop HR as a mathematial assistant by enablingit to produe high quality onjetures in domains of interest. This will in-volve giving HR extended knowledge of the domain it is to be used in. Thisinformation would inlude:� A large database of interesting onepts from the domain.� A database of important theorems from the domain.� Domain spei� onept formation tehniques.� Domain spei� onjeture making tehniques.We would also need to develop tools by whih the user an add newonepts, onjetures and proofs to a theory. One possibility for giving math-ematiians aess to onjeture making abilities is to embed the system in aomputer algebra system (CAS). When a user de�nes a funtion in a CAS,they are learly interested in the properties of that funtion, and have hosento investigate it by alulating values. One they have alulated suÆientvalues for the funtion, they may analyse the data using graphial tools, orsimply by looking at the output, in the hope of notiing a pattern.One way in whih onjeture making ould improve investigations of fun-tions is to study the output over a range of inputs, for example by notiingthat a partiular value is always output. However, this assumes that no on-ept formation is required to reah the interesting properties of the funtion,whih may not always be the ase. For example, if the user de�ned a fun-tion over the integers, the output may ontain few obvious lues about thenature of the funtion. However, it may be that restriting the funtion to apartiular type of numbers, for example prime numbers, produes a very in-teresting pattern in the data. We hope to see omputer algebra pakages notonly allowing the users to perform alulations, but also making them awareof empirially plausible onjetures involving the funtion and losely relatedonepts. For example, if we gave a CAS a prediate whih tests whether aninteger is refatorable or not (see x12.3.2), we would be very pleased if, aswell as alulating some values, it also reported that all the odd refatorablesit had found were square numbers (a theorem we prove in xC.1.2). We re-port on a preliminary appliation of HR to �nding onjetures about Maplefuntions in [Colton 02d℄.



286 14. Further Work14.2.2 Constraint Satisfation ProblemsConstraint satisfation problems (CSPs) as disussed in [Tsang 93℄, involveassigning a value to eah of a set of variables. The values are taken froma spei�ed domain for eah variable, and must be assigned in suh a waythat they do not break any onstraint from a given set. Di�erent searhmehanisms are available to �nd an assignment of variables whih satis�es theonstraints. Forward propagation ours whenever the onstraints are usednot just to prohibit ertain assignments, but to narrow down the possibilitiesfor a variable, thus utting down the searh spae. Constraint satisfationprovides an alternative to the Davis-Putnam method employed by MACEfor the generation of examples for �nite algebrai systems.In priniple, theory formation ould improve CSPs by �nding new on-straints, beause every theorem an be interpreted as a onstraint. For ex-ample, when trying to generate groups, the assoiativity, identity and inverseaxioms provide suÆient onstraints to �nd examples of small order. If theuser also supplies the quasigroup onstraint (also known as the `all-di�erent'onstraint), this improves the searh greatly, and allows a onstraint solverto �nd larger examples. In group theory, HR regularly makes the followingonjetures: 8 a; b 2 G; 9  2 G s.t. a �  = b8 a; b 2 G; 9  2 G s.t.  � a = bThese state that groups are also quasigroups. Transformation of onjeturesinto onstraints involves identifying the orret format for a onstraint. Theall-di�erent onstraint states that eah element must appear in every rowand olumn, and optimised algorithms are available to implement this on-straint very eÆiently [Regin 96℄. However, transformation of onjetures toonstraints may not in general produe optimised onstraints.We hope to show that some theory formation performed before a on-strained searh is performed will improve performane by identifying addi-tional onstraints. Adding onstraints to a CSP ould improve the searh be-ause more information is available about the examples to be found. We haveperformed some initial experimentation using the �nite domains onstraintspakage supplied with Sistus Prolog. However, we have to report that theproblem demands a more sophistiated approah than simply adding theo-rems as onstraints. We have found that adding onstraints an sometimesslow down the searh onsiderably beause the onstraints provide little for-ward propagation, but heking for ompliane is time onsuming.More optimistially, however, we have also applied theory formation toonstraint satisfation problems using the Choo [Laburthe 00℄ onstraintsolver. As reported in [Colton & Miguel 01℄, we used HR to automatiallygenerate additional onstraints for some algebrai problems. The results werevery enouraging. In partiular, in some ases, by adding in the extra on-straints found by HR, we ahieved a ten-fold inrease in eÆieny.



14.2 The Appliation of Theory Formation 28714.2.3 Mahine LearningMahine learning is a very important sub-area of Arti�ial Intelligene. Onetask in mahine learning is to identify a onept given examples of thatonept. For instane, given the integers 1 to 20, the bakground onept ofdivisors and positive and negative examples of a type of number suh as thefollowing: f2; 4; 6; 8; 10g and f1; 3; 5; 7; 9g; a mahine learning program suhas Progol [Muggleton 95℄ would learn the onept of even numbers.Beause of the similarity in the types of onepts whih HR and mahinelearning programs produed, we have ompared HR to Progol in x13.6. Wenoted that by using the invariane and disrimination measures, we weree�etively asking HR to perform a mahine learning task { to learn anyonept whih ahieved the required ategorisation. That disussion did notinlude ideas on how to apply HR to the problem of identifying a partiularonept given examples of that onept.We have performed some initial testing of HR's abilities in learning integersequenes. For example, we supply it with the integers: 2; 3; 5; 7; 11; and aftera short session, HR re-invents prime numbers as a onept whih �ts theexamples given. HR's model of theory formation is useful for an explorationof a domain, but is not well suited to �nding a partiular onept, wherea goal based approah is preferable. We have found that implementing alimited forward looking mehanism greatly improves HR's searh. Every timeit invents a new onept, the forward looking mehanism passes the oneptthrough a pattern-spotting algorithm assoiated with eah prodution rule.As disussed in[Colton et al. 00b℄, the algorithms are designed to quiklyevaluate whether passing the new onept through the prodution rule willresult in the target onept. The algorithms an antiipate how the oneptwill look after two and even three steps.This mehanism is partiularly e�etive when the onept is a ombina-tion of two fairly simple onepts. For example, the onept of integers whereevery digit is a prime number: 2; 3; 5; 7; 23; 25; 27; : : : has a omplexity of 5,as de�ned in x9.3.1. To exhaustively searh all onepts up to omplexity 5takes a long time. However, with the forward looking mehanism, as soon asHR invents prime numbers, it noties that the ombination of prime numberswith digits produes the target onept. Prime numbers have a omplexity ofjust 3, so these are found very quikly, leading to an eÆient solution of thelearning problem. In [Colton et al. 00b℄, we report on sequenes where theforward look ahead mehanism redued the time to learn the onept from90 minutes to just 7 seonds.Another appealing result reported in [Colton et al. 00b℄ ame from iden-tifying sequenes not in the Enylopedia of Integer Sequenes. The Eny-lopedia has good overage: for every set of four digits a; b; ; d suh thata < b <  < d, there is an Enylopedia entry starting a; b; ; d, with twoexeptions: there is no sequene starting 4; 5; 6; 9 and no sequene starting4; 5; 7; 9. We set HR the tasks of �nding a sequene whih started 4; 5; 6; 9 and



288 14. Further Work4; 5; 7; 9. In the seond ase, we were very surprised when HR produed an an-swer almost immediately: the sequene of primes + 2 starts 4; 5; 7; 9. This hassubsequently been added to the Enylopedia (sequene number A052147).HR also supplied a sequene starting 4; 5; 6; 9, but this had a ompliatedde�nition and was not submitted to the Enylopedia [Colton et al. 00b℄.14.2.4 Automated Theorem ProvingAt present, HR uses theorem proving to help omplete the yle of theoryformation. It uses Otter as a blak box and other than splitting equivaleneonjetures into smaller impliation onjetures, it does not try to inreaseOtter's hanes of proving the theorems presented to it. We have also enabledHR to model the way in whih results are olleted and used to prove latertheorems. A large and important researh question we hope to address iswhether performing theory formation before attempting to prove a givenonjeture will improve the eÆieny and/or overage of theorem provers.A �rst investigation will involve testing whether the generation and em-ployment of lemmas will improve theorem proving. We propose to developa system whih parses a theorem statement, and using the axioms supplied,performs theory formation to �nd and prove lemmas about the domain fromwhih the theorem is taken. Then, attempts are made to prove the theoremusing these lemmas. An initial exploration into suh an approah { in ollab-oration with Geo� Sutli�e { has not yet yielded any onrete results. Weantiipate that a great deal of ontrol will be required to hoose the orretlemmas using measures of interestingness [Barker-Plummer 92℄. One suhmeasure would be to somehow assess the syntati or semanti similarity ofthe lemma to the original theorem statement.A seond investigation will involve testing whether theory formation ansuggest intelligent ase splits for a theorem. For example, when attemptingto prove a theorem about groups in general, a good strategy may be toattempt to prove the theorem �rst about Abelian groups, then about non-Abelian groups. Doing so would obviously over all possible groups, and otheroverings of group types may be possible. A theory formation program suhas HR invents many types of groups and so ould suggest ase splits. Again,we antiipate that muh analysis will be required to enable the system toorretly hoose the ase split to apply.Another possibility is to make use of a omputer algebra system suhas Gap or Mathematia. In [Colton 00b℄ we propose a \plug and hug"1methodology to transform diÆult onjetures into potentially easier ones.There are many problems to whih suh an approah would be useful. A goodexample is given by Paul Zeitz in [Zeitz 99℄: prove that integers of the form:n(n+1)(n+2)(n+3) are never square numbers (where n is a positive integer).One approah to this would be to employ an indutive theorem prover. The1 A phrase oined by Paul Zeitz in [Zeitz 99℄.



14.2 The Appliation of Theory Formation 289alternative method proposed by Zeitz is to perform some alulations and seewhat happens. If we put n = 1; 2; 3; 4 into the formula, we get the numbers:24; 120; 360; 840 output. It should then beome lear that these numbers arealways exatly 1 less than a square number. To on�rm this, we must re-writethe original formula as one less than a square number thus:n(n+ 1)(n+ 2)(n+ 3) = n4 + 6n3 + 11n2 + 6n = (n2 + 3n+ 1)2 � 1One we have performed this transformation, it beomes trivial for us to provethe theorem { the distribution of the squares means that no two squares are1 apart, therefore as the original formula was one less than a square, it an-not be a square. Note that we have applied HR to this problem reently[Colton & Dennis 02℄. Note also that it is not trivial for an automated theo-rem prover to show that no two positive squares are 1 apart.By performing the original alulations, onept formation to invent theonept of squares minus one, and re-writing tehniques, we have e�etivelytransformed the theorem into one whih may require less dedution. It is alsopossible, however, that the new theorem may be more diÆult. This approahwould require omputation from a omputer algebra system, invention froma system suh as HR and dedution from a theorem prover. Designing anarhiteture for a system involving omputation, invention and dedutionwill pose many problems whih we hope to overome.14.2.5 Appliation to Other Sienti� DomainsMaking HR appliable to other sienti� domains was not a priority for thisprojet. However, in x1.1 we stated that, as mathematis plays a part in everyother siene, mathematial theory formation ould be very useful in otherdomains. This was a initial motivation (if not a goal) of this projet, andwe an suggest ways in whih HR ould be improved to form theories aboutobjets from sienes other than mathematis.Muh of siene is data-driven. That is, hypotheses are made based on theresults of experiments undertaken to investigate a partiular phenomenon.Further experiments are undertaken to verify the results and eventually, anexplanation may be proposed for the phenomenon, with more experimentsundertaken to support or refute the explanation. Mathematial disovery anbe ahieved in an entirely theory-driven manner, whih is not true of manyother sienes. However, HR is data-driven, beause the onjetures it makesare based on the examples it has in the theory, so there would not be aproblem hanging the way HR operates in general.Also, if the data in other sienes ould be given to HR in terms of objetsof interest, subobjets and relations, then there is every reason to believe HRwould form a theory without problem (and some evidene for this is givenin [Colton 01b℄). For instane, in hemistry, moleules ould be the objetsof interest, atoms the subobjets, and bonds between atoms and hemial



290 14. Further Workreations ould supply the relations. It is possible that HR ould re-inventhemistry notions suh as valeny from this initial information.However, automated disovery in other sienes is more driven by par-tiular experiments (or sets of experiments). That is, data from a partiularexperiment is analysed in order to gain an understanding of the proessesat work. It is possible that theory formation from low-level onepts suh as`moleule' and `atom' would be of little use for real sienti� appliations. HRmay require modi�ation to start with more extensive and detailed informa-tion from individual experiments. While there is no limit on the number ofinitial onepts whih an be supplied to HR, or indeed the number of exam-ples supplied for eah onept, HR has been developed to produe theoriesfrom little bakground information.As well as the volume of data, another obstale to overome would be thenature of the data from other sienes. Data from the physial sienes, forinstane, often ontains muh noise, as well as redundany, errors and missinginformation. To overome this, we would have to add more exibility to HR'sonjeture making mehanism. At present, HR will not make a onjeture ifthere is a single ounterexample to it, beause in mathematis, the theorem issimply not true. With data from the physial sienes, however, onjetureswhih are true of, say, 80% of the examples should not be ignored. We anpropose enabling HR to make onjetures in the same way as it does now,but allowing it to state { for equivalene onjetures { that two oneptshave nearly the same examples, with the notion of `nearly' determined by athreshold perentage set by the user.This would open up another interesting possibility for using a mahinelearning program suh as Progol: suppose HR makes a onjeture whih istrue for 80% of the examples it has. It ould then invoke a mahine learningprogram to �nd a property of the 20% of examples whih might explain whythe onjeture does not hold for those examples. It ould similarly look fora property of the 80% of examples whih explains why the onjeture doeshold for them.14.3 Theoretial Explorations14.3.1 Meta-theory FormationTo form a theory, HR requires objets of interest suh as graphs, deomposi-tion onepts suh as graphs into nodes and edges, and relationship oneptssuh as a node being on an edge. We propose to supply suh information notfrom a partiular mathematial domain but from the domain of `theories'.In partiular, the objets of interest would be theories HR has produed, thesubobjets would be onepts and onjetures and the relationships wouldpossibly be (i) a onept being involved in a onjeture, (ii) a onept being



14.3 Theoretial Explorations 291the hild of another onept, and so on. We hope this would lead to theoryformation at the meta-level, as proposed by Buhanan in [Buhanan 00℄.We believe HR's prodution rules ould be used for suh meta-theoretiexplorations. For instane, we hope HR would re-invent the notion of a fun-tion using the size and split prodution rules to de�ne funtions as thoseonepts with exatly one output for every input. Prediates would then bede�ned as the omplement of funtions (using the negate prodution rule).HR would �nd examples of funtions in theories from every domain, and ouldpresent examples from number theory, graph theory, et. We intend to exper-iment with how to split theories into objets of interest, subobjets and soon. One appliation of this will be to improve the forbidden paths mehanism(see x6.9.1) by enabling HR to realise that a ertain series of onstrutionsalways leads to a trivial onjeture. Initial experiments in meta-theory for-mation have been undertaken, as desribed in [Colton 01b℄, but disussion ofthem is beyond the sope of this book.14.3.2 Cross Domain Theory FormationHR has been developed to work in a single domain at one. While it anintrodue numerial onepts suh as the number of edges in a graph, itannot treat those numbers as objets of interest themselves. So, for example,graphs with a prime number of edges are outside HR's range. Cross domainonepts and onjetures are fairly rare in the literature, but they are oftenof great importane. Examples inlude:� The moonshine onjetures whih ombined ideas from group theory andellipti funtions [Conway & Norton 79℄.� The disovery of the Jones polynomial [Jones 86℄ in knot theory, whihapplied ideas from von Neumann algebras to knot theory.� The use of prime numbers to haraterise groups in Sylow theory [Sylow 72℄.� Odd order nodes in graphs whih were required to solve the bridges ofK�onigsberg problem [Euler 36℄.As disussed in his MS. dissertation [Steel 99℄, Graham Steel has alreadydone muh work towards making HR ross domain, and his version of HRsuessfully formed onepts whih had aspets of two or more domains, suhas number theory and graph theory. To do this, Steel failitated ross domaintheory formation in HR and introdued measures to ontrol how and whenross domain onepts were introdued. Also, the \extreme" prodution rule(as disussed in x14.1.1 above) helped enourage ross domain onepts tobe formed.There is still some further work whih ould be arried out in this area.For instane, if the user provided information on how to �nd examples of,say, graphs embedded in objets of a general nature, it would be possible forHR to use an \embed" prodution rule. For example, given the divisors of



292 14. Further Workan integer, HR ould use the embedding information provided by the userto de�ne a \divisor graph" for the integer, by thinking of the divisors asnodes, whih are joined if one divisor atually divides the other. Then onemay ask whih integers have a divisor graph whih is planar. We investigatethis question and others of a similar nature in xC.4.Any onept with a data table of arity 3 { in the example above it is pairsof divisors, one of whih divides the other { ould be turned into a graph ina similar way. Suh embeddings may turn out to be rare, but would ertainlyprovide muh sope for omplex ross domain theory formation. The embedprodution rule ould also be used to �nd embeddings within a single domain,and so ould be responsible for the introdution of the onept of subgroupsin group theory or subgraphs in graph theory. See [Colton et al. 02℄ for adisussion of the embed prodution rule in the Java version of HR.14.3.3 Agent Based Cooperative Theory FormationWith an ability to form theories with onepts from more than one domain,it may be desirable to have two versions of HR working in di�erent theoriesommuniating onepts to eah other. Some preliminary experimentationhas shown that an ageny of opies of HR running independently and om-muniating onepts to eah other an improve the eÆieny and reativityof the system as a whole [Colton et al. 00a℄. The AM program did not modelthe soial aspets of theory formation within the mathematial ommunity.This has been mentioned in [Furse 90℄ as a possible reason why AM ame toa halt after a while due to lak of interesting avenues of researh.One possible fruitful appliation of suh a ommunity of theory formationis in learning onepts as disussed in x14.2.3 above. For example, when at-tempting to learn a de�nition for the following sequene: 3; 5; 8; 13; 20; 31; : : :one approah ould be to look for a property of integers shared by 3; 5; 8; et.,whih is not shared by the other integers. Another approah is to apply atransformation to the sequene2 and try to learn the resulting sequene. Per-haps the most well known transformation is to take the di�erenes betweensuessive terms. In the above example, we �nd that the sequene resultingfrom this transformation is the primes: 2; 3; 5; 7; 11; : : : A multi-agent ap-proah where one agent looks for a onept satisfying the original sequene,and the others look for onepts satisfying transformed sequenes may proveto be worthwhile, espeially if the agents shared results. Suh an approahis disussed in [Colton et al. 00b℄. Moreover, as disussed in [Pease et al. 00℄and [Pease et al. 01℄, Alison Pease has begun work on a multi-agent versionof HR to model the soial nature of reative mathematis, in partiular usingmethods advoated in [Lakatos 76℄.2 See [Sloane & Bernstein 95℄ for example transformations.



14.4 Summary 29314.4 SummaryWhile we have implemented the ore proedures for performing theory for-mation, there are still many improvements whih an be made to HR. Thereare also some broader areas for development suh as ross domain and multiagent theory formation whih have not yet been fully explored. Also, we anspeulate about applying theory formation tehniques to assist with otherproblems in Arti�ial Intelligene, suh as theorem proving and mahinelearning. Furthermore, it is our hope that theory formation programs will be-ome important tools enabling mathematiians to invent onepts and makeand prove important onjetures in their �eld of study.As mentioned previously, there has been onsiderable work on the HRprojet whih has not been fully disussed in this book. Below are someprojet desriptions with referenes for further reading.� Cross-domain theory formation [Steel 99℄, [Steel et al. 00℄.� Multi-agent theory formation [Colton et al. 00a℄.� Meta-theory formation [Colton 01b℄.� The modelling of Lakatos-style reative reasoning [Pease et al. 00℄.� Evaluating mahine reativity [Colton 00a℄, [Colton et al. 01b℄,[Pease et al. 01℄, [Rithie 01℄.� The appliation of theory formation to disovery tasks in Zariski spaes[MCasland et al. 98℄, [Bundy et al. 02℄, [MCasland et al. 02℄.� The appliation of theory formation to tutoring tasks in mathematis[Colton et al. 02℄.� Prodution of benhmark problems for automated theorem provers[Colton & Sutli�e 02℄.� Using HR to ompare automated theorem provers [Zimmer et al. 02℄.� Further appliation to integer sequene disovery [Colton & Dennis 02℄.� Automated onstraint generation [Colton et al. 01a℄, [Colton & Miguel 01℄.� Automated theorem generation [Colton 01a℄, [Colton 01℄, [Colton 02℄.� Automated puzzle generation [Colton 02b℄.� Employing theory formation to guide proof planning [Meier et al. 02℄.� Making onjetures about Maple funtions [Colton 02d℄.� Further omparison of automated theory formation and mahine learningprograms [Colton 02a℄.





15. Conlusions
1, 2, 4, 8, 9, 16, 18, 32, 36, 64, 72, 128, 144, 225, 256, 288, 441, : : :A049439. Integers where the number of odd divisors is an odd divisor.Mathematis is set apart from the other sienes by the notion of a proof { anargument for the truth of a hypothesis so onvining that all who understandit are satis�ed. However, aspets other than theorem proving have alwaysbeen held in high regard in mathematis. In partiular, an ability to inventnew onepts and to �nd interesting and relevant onjetures are essentialtools for mathematiians. In a letter1 to Eratosthenes, Arhimedes wrote:... [F℄or example, we must give Demoritus, who was the �rst to statethe theorems that the one is a third of the ylinder and the pyramidof the prism, but who did not prove them, as muh redit as we giveto Eudoxus, who was the �rst to prove them.Similarly, while the great mathematiian Paul Erd}os has been alled:... the onsummate problem solver [Baker et al. 90℄,it has also been said that Erd}os:... invented a new kind of art: the art of raising problems [Lov�asz 93℄.Whereas automated theorem proving has been muh researhed in Arti�ialIntelligene, the question of automatially produing relevant and interestingonjetures has only rarely been addressed. Furthermore, researh projetsin automated theory formation { where many mathematial ativities suhas onjeture making and theorem proving are automated and ombined {are even rarer.We have designed, implemented and tested the HR system to perform au-tomated theory formation in pure mathematis. Our primary aim has beento show that theory formation in many di�erent domains an be automatedto inlude a variety of mathematial ativities and to produe interesting the-ories. We aimed to provide a model for automated theory formation without1 Credit to Graham Steel for �nding this relevant quotation.



296 15. Conlusionsneessarily modelling human theory formation. A seondary aim has been touse theory formation for mathematial disovery tasks. To onlude our dis-ussion of the HR projet, in x15.1, we assess to what extent these two aimshave been ahieved. In x15.2 we look again at the ontributions this projetmakes to the state of the art, and in x15.3, we o�er some �nal thoughts onthe prospets for automated theory formation in pure mathematis.15.1 Have We Ahieved Our Aims?The hypotheses we proposed in Chapter 1 were (i) theory formation an beautomated in suh a way that rih and interesting theories are formed fromjust the fundamental onepts in a domain and (ii) this an be done in ageneral way appliable to more than one domain.Looking at the �rst hypothesis, we refer bak to the theory of groups dis-ussed in x11.1.2. HR began the session with just the axioms of group theoryand ended with (a) 6 groups, the largest of whih was of size 8, (b) 143 on-epts about groups, whih ahieved 18 di�erent ategorisations of the groups,() 7 open onjetures, (d) 325 theorems about the nature of groups, (e) 301prime impliates and (f) 574 human-readable proofs of sub-onjetures. Fur-thermore, we found many interesting aspets of the theory, inluding somelassially interesting onepts and onjetures, some non-obvious prime im-pliates, a ounterexample of size 8 and some open onjetures, one of whihwas later proved by a group theorist. This theory was not hand piked for itsoutstanding qualities, rather, it was taken as representative of HR's output in�nite algebrai systems. Hene, interpreting the phrase \rih and interesting"to mean ontaining a good mix of onepts, onjetures, et. whih are wor-thy of further investigation, we hope to have provided onvining evidene infavour of the truth of the �rst hypothesis.Looking at the seond hypothesis, HR has worked in 22 di�erent domains(see page 308 below for the list). It an work in any �nite algebrai systeminluding well known ones suh as group, quasigroup and ring theory, as wellas lesser known ones suh as Moufang loops and anti-assoiative algebras.HR an also perform in graph theory and group theory, so it overs some ofthe most important domains of mathematis. As examples of HR's suess,it has re-invented graph types suh as stars and yles, it has re-invented thequasigroup axioms and onjetured and proved that groups are quasigroupsand it has invented new integer sequenes. Again, we hope this is onviningevidene in favour of the seond hypothesis.The seondary projet, to apply HR to disovery tasks, has also beenvery fruitful. As mentioned above, HR has invented 20 integer sequenes andprovided interesting onjetures about them of suÆient quality to allow thesequenes into the Enylopedia of Integer Sequenes. As this ontains morethan 60,000 sequenes, and number theory has been studied for thousands ofyears, it is a signi�ant ahievement for a omputer program to invent some



15.2 Contributions 297new and interesting ones. In two smaller experiments, we also showed thattheory formation an be driven to �nd onepts with partiular qualities, andthat using HR to explore a new domain { in our ase anti-assoiative algebras{ an bring to light some interesting and unexpeted theorems.15.2 ContributionsWe set out six areas in Chapter 1 where this projet had made a ontributionto the state of the art in automated mathematial theory formation. In thefollowing subsetions, we examine eah ontribution by restating what hasbeen ahieved and by desribing the tehnial problems we faed and how wesolved them.15.2.1 FuntionalityThe �rst ontribution we stated in Chapter 1 was:� HR has more funtionality than the other theory formation programs. It isthe �rst to perform onept formation, onjeture making, theorem provingand ounterexample �nding, and is the �rst to interfae with a third partytheorem prover and model generator to do this.Whereas some of the other programs surveyed in Chapters 2 and 13 had the-orem proving modules and ounterexample �nding apabilities, none of themused third party programs as blak boxes. We feel that the integration of ex-isting mathematial programs is very important for theory formation projetsas there is a wealth of powerful software available. Re-implementing math-ematial tehniques within a theory formation environment is a dupliationof e�ort.None of the previous theory formation programs have all the funtional-ity available to HR. GT omes losest, with all of HR's funtionality exeptounterexample �nding. However, GT is limited to working in graph theory.To ahieve the integration of the di�erent mathematial ativities, we �rsthose Otter and MACE beause they are powerful programs and they havevery similar input syntax. To enhane HR's theorem proving abilities, wealso implemented a forward haining mehanism to enable it to prove sub-onjetures without using Otter. This was done for two reasons. Firstly, wewanted to model the way in whih a set of theorems is built up, with earlierresults being used to prove later ones. Seondly, we wanted to have some hu-man readable proofs in the output beause the resolution proofs from Otterwere diÆult to omprehend. To enhane HR's ounterexample �nding abil-ities, mainly beause MACE did not work with numerial onepts suh asthose found in number theory and graph theory, we implemented a generate



298 15. Conlusionsand test approah whereby HR used the Prolog de�nitions of onepts to�nd ounterexamples to onjetures. We also enabled HR to return to openonjetures and attempt to disprove them with a newly found example.Our main ontributions to automating individual mathematial teh-niques has been in designing and implementing onept formation and on-jeture making tehniques. Conept formation has been ahieved using sevengeneral prodution rules designed to take one or two old onepts as inputand output a new onept. Muh of our e�ort has been expended in perfetingthese rules. Many diÆulties arose in terms of making them as general as pos-sible, determining the most eÆient ways for them to transform data tablesand de�nitions, and restriting their usage via forbidden paths to dereasethe yield of tautology onjetures. As well as enabling HR to make onje-tures based on empirial evidene during theory formation, we also enabledit to extrat and prove prime impliates and to data-mine the Enylopediaof Integer Sequenes to make onjetures in number theory, as disussed inx15.2.5 below.15.2.2 Simpliity of ArhitetureThe seond ontribution we stated in Chapter 1 was:� The arhiteture used to ahieve theory formation is muh simpler than inother programs, requiring less bakground knowledge and using onsiderablyfewer onept onstrution tehniques and heuristi measures.We made partiular advanes over the arhiteture in the AM program,whih we argued in x13.1.2 performed a very ompliated heuristi searh.Our main ontribution was to separate the notions of (i) onepts, (ii) de�ni-tions of onepts, (iii) examples of onepts, (iv) prodution rules for buildingnew onepts, (v) heuristi measures for assessing onepts and onjeturesand (vi) an overall evaluation funtion used to sort the onepts. WhereasAM started with 115 initial onepts and used 242 heuristis to produe onlyaround 180 new onepts, HR starts with only three or four onepts anduses only seven prodution rules and 18 heuristi measures, yet an produethousands of onepts, onjetures, theorems and proofs. Although we haveadded to the ritiism of AM so that automated mathematial theory forma-tion an emerge from its shadow, we aknowledge that AM was a motivationfor HR and many other projets.15.2.3 Cyle of Mathematial AtivityThe third ontribution we stated in Chapter 1 was:� HR is the �rst to employ a yle of mathematial ativity whereby, amongstother things, information from proof attempts is used to better assess theonepts, thus improving onept formation.



15.2 Contributions 299The integration of HR's mathematial ativities has been for one mainreason, so that it an intelligently assess the worth of the onepts in orderto drive a heuristi searh. We have designed and implemented a series ofmeasures able to make instant judgements about a onept both in terms ofintrinsi properties suh as how omprehensible the de�nition is, and in termsrelative to the other onepts, for example judging how novel the ategorisa-tion ahieved by the onept is. Furthermore, we have introdued measureswhih hange as the theory grows. In partiular, the interest shown in apartiular onept inreases as it appears in more theorems and open on-jetures. To model this aspet of theory formation, we implemented a yleof mathematial ativity where the diÆulty of a proof is used to assess thetheorem, whih in turn is used to assess the onepts involved in the theorem.No other theory formation programs lose a yle of ativity in this manner.15.2.4 Generality of MethodsThe fourth ontribution we stated in Chapter 1 was:� HR has been suessfully applied to di�erent domains. These inlude many�nite algebrai systems suh as group theory and ring theory as well as num-ber theory and graph theory. All previous theory formation programs haveworked mainly in a single domain.We have desribed in x15.1 how HR has been used in many di�erent do-mains. Our main ontribution here was to design prodution rules whih arevery general. The rules were inspired not by single onepts but by generaltypes of onepts. For example, the forall prodution rule was inspired by on-epts suh as Abelian groups and omplete graphs, whih have every possibleourrene of a phenomena. Similarly, the onjeture making tehniques weredeveloped after observing that many of the theorems found in mathemat-is are either equivalene, impliation, appliability or non-existene results.While there have been some small experiments with other theory formationprograms in domains other than their primary one, no great suess has beenreported and none of the programs have been shown to be as general as HR.15.2.5 Mathematial DisoveryIn Chapter 1, we stated that HR has added to mathematis. We have overedHR's disoveries to a large extent in x15.1 above. To enable HR to performlassi�ation tasks, we implemented the invariane and disrimination mea-sures. The ore model of theory formation was used for the exploration of anew algebrai system and for inventing integer sequenes. Our major ontri-bution to mathematial disovery was to enable HR to investigate the integer



300 15. Conlusionssequenes it produed. To do this, we implemented data-mining tehniquesable to extrat information from a loal opy of the Enylopedia of IntegerSequenes. This involved presenting HR's number theory onepts as integersequenes, determining how two sequenes ould be related and implement-ing ways for HR to �nd sequenes in the Enylopedia related to the one wewere investigating. It also involved de�ning and implementing ways to prunethe output, beause so many results were produed.15.2.6 Evaluation TehniquesThe �nal ontribution we mentioned in Chapter 1 was in ollating and ex-plaining some of the many di�erent ways in whih a theory formation programan be assessed. Evaluating HR has been a non-trivial task, mainly beausethere are no benhmarks or previous programs whih performed in the sameway against whih we ould test HR. In other areas, new tehniques an beshown to improve on old ones by performing faster or by overing a largerset of examples, et.Our evaluation was broken into three main areas: (i) assessing the theorieswhih HR formed, (ii) investigating HR's appliation to disovery tasks and(iii) omparing HR with similar programs. Our main ontribution to theevaluation of theory formation programs has been how to assess the theoriesHR produed. In partiular, we analysed two sample theories produed byHR in order to give a subjetive aount of their interestingness. We alsotested whether the heuristi measures improved the theories in terms of theaverage quality of the onepts and onjetures and the balane of oneptsto theorems and open onjetures to theorems. To do this, for eah measure,we reorded any improvements when the measure was used alone, used asa dominating measure, used at all and not used. We onluded that it waspossible to improve the quality of a theory with areful hoie of measuresand weights in the evaluation funtion.We also deided to highlight the potential pitfalls of using the heuristisearh. In partiular, we introdued a way of determining how robust theheuristi searh is with respet to hanges in the weighting of eah measurein the evaluation funtion. We also showed how diÆult it may be to preditthe nature of a theory beause the axioms are more inuential than the searhparameters. Furthermore, we showed how pruning an improve the qualityof the theory, but that this may lead to a derease in the average value for apartiular measure.Finally, we looked at the lassially interesting results HR re-invented andexplained how these ould be verbatim re-inventions or re-disoveries whihrequired �ne-tuning, and that onepts an often be re-invented with non-standard de�nitions. We argued that assessing whether HR rated the wellknown onepts and onjetures as interesting was problemati and poten-tially misleading.



15.3 Automated Theory Formation in Pure Maths 30115.3 Automated Theory Formation in Pure MathsComputer algebra systems, theorem provers and model generators are beom-ing inreasingly powerful, and new e�orts suh as the Calulemus projet(http://www.mathweb.org/alulemus) are being made to ombine suhsystems. Hene there are real opportunities for building better theory forma-tion programs, and more potential for interesting disoveries to be made usingautomated theory formation. Furthermore, new mathematial databases likethe Enylopedia of Integer Sequenes are being ompiled, for example theMBase projet [Kohlhase & Franke 00℄. It may be possible to ombine anddata-mine these databases to �nd surprising results suh as the Moonshineonjetures [Conway & Norton 79℄, and we believe theory formation will havea role to play in suh projets. We hope that theory formation programs willone day be used by mathematiians.We envisage two main diÆulties to overome in building more advanedtheory formation programs. Firstly, saling from programs whih model the-ory formation to programs whih mathematiians employ will be very diÆ-ult. This will most probably involve (i) further theoretial explorations ofhow theories are formed, inluding study of ross-domain theory formationand meta-theory formation, (ii) implementation of improved models of theoryformation, (iii) integration of a variety of third party mathematial pakages,in partiular omputer algebra systems and theorem provers, and (iv) exten-sive �eld testing to see if the programs are of use to mathematiians.Seondly, getting the program aepted and disseminating its results willbe non-trivial. It is by no means ertain that mathematiians need or evenwant suh theory formation programs, and a problem with developing theseprograms as Arti�ial Intelligene projets is that there is often little motiva-tion to use them for real mathematial researh. This was the ase with theAM and GT programs, both of whih were written to form mathematial the-ories, but neither of whih added to mathematis or attrated muh attentionfrom mathematiians. Comparing AM and GT with the GraÆti program {whih has been developed by a mathematiian, Siemion Fajtlowiz { we notethat GraÆti is still being used (unlike AM and GT) and over 60 papers havebeen written about its onjetures, beause Fajtlowiz has made its resultspublily available.HR is named after the mathematiian Godfrey Harold Hardy and one ofhis most reative ollaborators, Srinivasa Aiyangar Ramanujan. In [Hardy 92℄,Hardy o�ers his opinion on mathematis: \I am interested in mathematisonly as a reative art." While muh has been written about mahine re-ativity, reative omputer programs have only reently started to appearin Arti�ial Intelligene. We believe that mathematis is a highly reativepursuit and that theory formation programs suh as HR an be onsideredreative. Furthermore, espeially if this tehnology an be embedded intoomputer algebra systems, we believe theory formation programs will oneday be important tools for mathematiians.





Appendix A. User Manual for HR1.11
1, 11, 12, 20, 21, 23, 24, 25, 26, 27, 28, 29, 32, 42, 52, 62, 72, 82, : : :A057303. Integers where the number of distint digits is a digit in base 10.The latest Prolog version of HR is 1.11. As disussed in Chapter 14, we arepresently writing version 2.1 in Java, but disussion of that implementationis beyond the sope of this book. HR 1.11 onsists of a set of modules whihare loaded into the Sistus Prolog interpreter, and some auxiliary �les suhas Unix shell sripts. The user interats with HR by giving ommands whiheither instrut HR to do something or ask a question about the theory thathas been formed.To desribe the ommands that are available, we assume the followingplan for using HR:[1℄ Some settings are spei�ed for the theory formation.[2℄ The theory is initialised by providing onepts.[3℄ A theory is onstruted.[4℄ The theory is investigated.The ommands for performing eah of these ativities are given in setionsxA.2 to xA.5. The ommands given in the example sessions in Appendix Balso highlight how HR is used. There are many individual ommands requiredto use HR. In ertain ases we have set up an interfae where a family ofsimilar ommands are alled using the same stem for the ommand. As atheory is being formed, HR alls relevant third party programs to performvarious ativities and in xA.1 we desribe how to get hold of these programsand how to install HR 1.11. In xA.6 we desribe the online help available inHR and the demonstrations pakage whih should provide assistane for anew user of HR.



304 Appendix A. User Manual for HR1.11A.1 Installing HR 1.11We desribe how to install HR 1.11 on Unix platforms. For details about Win-dows installations, please ontat simono�dai.ed.a.uk. Firstly, SistusProlog version 3.5 (http://www.sis.se/isl/sistus.html) is required torun HR 1.11. Unfortunately, the version of Sistus Prolog must be 3.5, be-ause later versions have a ompatibility problem with the Prolog-objetspakage (and earlier versions may not be ompatible). To enable HR to workwith later versions of Sistus would require a major overhaul. Also, the ver-sion of Prolog must be that supplied by Sistus, as we use the Prolog-objetspakage whih is not supported by other Prolog implementations.The distribution of HR 1.11 is available from here:www.dai.ed.a.uk/~simono/researh/hr/download/hr1p11.tar.gzTo unpak this, it is �rst neessary to hoose a diretory for HR, whih wewill all HRPath. HR must be unpaked into this diretory using these Unixommands:gunzip hr1p11.tar.gztar -xvf hr1p11.tarThis will set up the diretory struture as in Figure A.1. The ode di-retory is where the Prolog modules whih make up HR are stored. Thedata diretory is where the data �les for domains are stored (see xA.3). Themodes diretory ontains mode �les (see xA.2) and the sripts diretory on-tains bath �les enabling HR to interat with Otter and MACE. We providethe runs diretory as a spae for running HR sessions.
HRPath

modesdatacode runs scripts

integergroupgraphFigure A.1 Diretory struture for HR 1.11It is also neessary to set up a .hr �le in the home diretory of the user.This must ontain one line ontaining the full path name for HR, e.g.'/home/user/hruser/hr1p11'.Note that the line must be in exatly the above format. Also, the �les in thesripts subdiretory have to be made exeutable with the ommand:hmod 1777 /home/hruser/hr1p11/sripts/*(substituting the appropriate path name for HR).



A.2 Speifying Settings 305To use the theorem proving and ounterexample funtionality, the Otterand MACE programs are needed, whih an be obtained from here:http://www-unix.ms.anl.gov/AR/These must be installed in suh a way that the Unix ommand otter will allOtter and the ommand mae will all MACE from the runs subdiretory.HR also uses the Dot program for drawing graphs whih is available here:http://www.researh.att.om/sw/tools/graphvizand the graph drawing tool GNUplot, whih is usually available in Unix, butalso available by FTP from here:ftp.dartmouth.edu/pub/gnuplot/gnuplot3.5.tar.ZOne in the runs diretory, to run HR, the ommand is:sistus3p5 -l ../ode/hr.plA.2 Speifying SettingsHR is designed to be highly ustomisable, with many parameters the user anset to hange the way a theory is formed. HR has a set interfae throughwhih all settings for the theory formation should be spei�ed. Most om-mands for this interfae have the format: set::parameter(value). For ex-ample, this ommand: set::omplex max(8).spei�es that there is to be a omplexity depth limit on the searh.In Table A.1 we list the parameters available via the set interfae alongwith details of what they do and the values whih an be assigned. In thetable, Y/N means that either a \yes" or \no" should be supplied, N meansthat an integer should be supplied, W means that a word should be suppliedand L means that a list should be supplied.The way in whih onepts are sorted an also be stipulated using the setinterfae, by setting weights for the measures used in the overall evaluationof onepts and onjetures. If the user issues the ommand:set::onept weights.then HR will list the measures for assessing onepts and ask the user for aweight for eah one in turn. Similarly, the ommand:set::onjeture weights.will enable setting of the weights for the assessment of onjetures.



306 Appendix A. User Manual for HR1.11Parameter Explanationarity limit(N) the limit on the arity of the onepts is set to Naxiom sheme(L1,L2) L1 is a list of algebra names in whih to proveonjetures, with L2 being the weightsas explained in x10.2.2biggest number(N) the largest integer that an be introdued innumber theory (as explained in x8.3.3)omplex max(N) the omplexity depth limit is set to Nounterexamples(Y/N) whether HR attempts to �nd ounterexamplesgold standard(L) L is the ategorisation of the entities as a list of listsagainst whih the invariane and disrimination ofonepts will be measuredinteger limit(N) N is the largest integer HR an introdueas a ounterexample in number theorykeep onjetures(Y/N) whether HR keeps the onjetures it makesmae time limit(N) N is the number of seonds MACE should spendlooking for ounterexamples at eah example sizemodel generator(W) whether HR or MACE should generate examples.W should either be hr or maeotter time limit(N) N is the number of seonds Otter should spendattempting proofsprint style(W) What information is portrayed to sreen duringtheory formation. W an be either theory for thetheory or debug whih desribes what HR is doingprodrules(L) L is a list of prodution rule names whih HRis to use. The options for the list are: onjunt,ommon, ompose, exists, forall, math,negate, size and splitproof attak(W) W is either subgoal or straight. The formerindiates that HR should break onjeturesinto subgoals before proving them,the latter does not break the onjeturesproofs(Y/N) whether HR attempts to prove onjeturesreport when(N) N is the number of steps afterwhih HR presents a report on the theorysearh(W) W is the type of searh to be performed. W should bedepth, breadth, random, novelty or produtivitysort onjetures(N) whether the onjetures should be sortedsort inrement(N) HR sorts its onepts after every N new oneptshave been introdued (or onjetures or steps,as spei�ed by sort marker)sort marker(W) W is either onept, onjeture or step andspei�es how HR deides when to sort the oneptssort when(N) N is the number of initial onepts (or onjetures,et.) before whih HR should not sort its oneptssplit values(L) a list of values to whih variables an beinstantiated by split prodution ruleTable A.1 The set interfae



A.3 Initialising Theories 307HR reords all settings and they an be stored in a �le to be read in at thestart of later sessions. After speifying some settings and deiding on a nameto identify this olletion, the user an ask HR to store these as a mode inthis way: set::save mode(mode name).This will save the settings in a �le alled mode name.mod in the modes sub-diretory from the HR path. The ommand:set::mode(mode name).will retrieve the mode and HR will list the settings it has altered. In pratie,to enable a more �ne grained approah, we load more than one mode, eahwith di�erent settings. To hek the settings at any stage, the ommand is:set::show.To reset all the settings to the defaults, the ommand is:set::reset all.The default settings should enable the user to start HR straight away.In the distribution of HR 1.11 we also supply three default modes whihhave settings speialised for eah domain. These are alled number default,graph default and algebra default for number theory, graph theory and�nite algebrai systems respetively.A.3 Initialising TheoriesAs disussed in Chapter 5, there are two ways to give HR the bakgroundonepts it requires to start a theory. Firstly, the user an supply the data foronepts in a �le with a .dat extension. The �le must be stored in a subdire-tory of the data subdiretory. The subdiretory should have the same nameas the domain, e.g. a bakground �le for group theory named groupbg.datshould be stored here:HRPath/data/group/groupbg.datThe data �les ontain only the data tables for the bakground onepts. Allother information about the onept is stored in the data.pl �le whih isfound in the ode subdiretory. Adding a new onept is time onsumingand we hope to provide a simpler interfae for this in future. We suggestthe user looks at the information in data.pl and the data �les in the datasubdiretories to determine the information required and how to provide it.



308 Appendix A. User Manual for HR1.11We have supplied many bakground information �les in the distributionof HR 1.11. These ontain various ombinations of onepts, suh as divisors,digits and multipliation and various sets of entities suh as the numbers 1to 10 or the numbers 1 to 30, the groups up to order 6 or 8, the ompletegraphs up to order 4 or 5 and so on. We suggest some experimentation withthese bakground �les.To initialise the theory for domain D using �le F , the ommand is:data(D)::from file(F).For example, to use the smalldiv data �le for number theory, whih on-tains the onepts of integers, divisors and multipliation alulated for thenumbers 1 to 10, the ommand is:data(integer)::from file(smalldiv).Note here that the domain is alled integer to avoid onfusion with the`number' type olumns that the size prodution rule introdues.The seond way in whih the theory an be initialised is by using MACEto generate the onepts from the axioms of a �nite algebrai system, asdisussed in x5.4. To do this for say, group theory, the ommand is:data(group)::initialise(mae).We have given HR 1.11 aess to 20 di�erent algebrai systems. The domainnames (as supplied to HR) are the following:galois field groupip loop ip quasigrouploop medial quasigroupmonoid moufang loopnilpotent quasigroup qg3 quasigroupqg4 quasigroup qg5 quasigroupqg6 quasigroup qg7 quasigroupquasigroup ringrobbins algebra semigrouptrivial ts quasigroupIt is not partiularly diÆult to add a new algebrai system and we suggestthe user onsult �le data.pl in the ode subdiretory to see how to do this.Note that the ommand: restart will start a new session.



A.5 Investigating Theories 309A.4 Construting TheoriesThe ommand to instrut HR to start theory formation has this format:onstrut(Number, Objets).The user an speify what the �nished theory is to ontain by stating atype of objet, suh as a onept or onjeture and the required number ofthem. For example, given the ommand:onstrut(100,onepts).HR will onstrut a theory until it ontains 100 onepts. The list of objetsthat an be requested is:ategorisations - number of di�erent ategorisationsahieved by the oneptslassi�ations - number of onepts ahieving thegold standard ategorisationonepts - number of oneptsonjetures - number of onjetures (proved, disproved or open)entities - number of entities introdued as ounterexamplesopen onjetures - number of open onjeturesprime impliates - number of prime impliates from theoremstheorems - number of proved onjeturesAlternatively, HR an be asked to onstrut a theory for a ertain lengthof time with the ommands:onstrut(N,seonds). onstrut(N,minutes). onstrut(N,hours).or it an be asked to perform a ertain number of theory formation steps:onstrut(N,steps).A.5 Investigating TheoriesWe have provided many prediates to enable the user to investigate the theo-ries HR produes. These inlude a print interfae to ollate results on sreen,a view interfae whih presents graphial information, a query mehanismto �nd onepts or onjetures of a partiular nature and a set of prediatesto produe additional onjetures.



310 Appendix A. User Manual for HR1.11A.5.1 Printing Results to SreenThe ommands in the print interfae present individual or ollated resultson sreen. There are two di�erent formats for the ommands:print::X. and print::X(N).where X is a property of the theory and N is a number. For example,print::onepts.prints de�nitions for all the onepts to sreen. However,print::onept(19).only outputs the de�nition for onept 19. The print ommands are sum-marised by the parameter spei�ed and the information whih is printed tosreen in Table A.2.Note that all forms of onjetures are output using their Otter-style de�-nition. Cayley tables are output to enable the user to hek alulations. Forexample, the ommand: ayley table('3').in group theory produes a Cayley table for the group 3:3* | 0 | 1 | 2 |--+---+---+---+0 | 0 | 1 | 2 |--+---+---+---+1 | 1 | 2 | 0 |--+---+---+---+2 | 2 | 0 | 1 |--+---+---+---+A.5.2 Viewing Graphial InformationWe have enabled HR to present information graphially using two graphdrawing pakages. These programs are invoked using the view interfae.The Dot program, [Koutso�os & North 98℄ is a useful tool for drawinggraphs whih we make extensive use of. To do this, HR writes a Dot-readable�le and then invokes Dot to produe a postsript �le. HR then displays thepostsript �le on sreen. Our �rst use of this is to produe diagrams portray-ing the onstrution history of a onept, whih an often be more informativethan the de�nition alone. We have seen suh diagrams throughout the book,in partiular in x6.10. To generate a diagram for the onstrution history ofonept number N, the ommand is:view::onstrution history(N).



A.5 Investigating Theories 311Parameter Information printed to sreenategorisations the set of ategorisations ahieved by the oneptsayley tables the set of Cayley tables (one for eah entity in a�nite algebrai system)ayley table(W) the Cayley table for entity Wlassi�ations all onepts ahieving the gold standard ategorisationonept(N) the Otter-style de�nition for onept Nonepts the Otter-style de�nition for every oneptonepts(N) the Otter-style de�nition for every onept of arity Nonjeture(N) the Nth onjeture that was madeonjetures all the onjetures in the theoryounterexample(N) the Nth entity that was introdued as a ounterexamplefats the set of fat onepts (as de�ned in x6.9.1)missing number the set of integer sequenes in the theory whih aretypes(N) missing from the Enylopedia of Integer Sequenesusing the integers 1 to Nnon fats the set of onepts whih are not fatsnon theorem(N) the Nth false onjeture that was madenon theorems the set of false onjetures that were madenumber of(W) W is either onepts, onjetures, theorems,prime impliates, subgoalsor ategorisations.This ounts how many there areordered prime the prime impliates ordered by proof lengthimpliatesordered theorems the theorems ordered by proof lengthopen onjetures the set of open onjeturesprediate(N) the Prolog de�nition for onept Nprediates the Prolog de�nition for every oneptprediates(N) the Prolog de�nition for every onept of arity Nprime impliates the prime impliates in the theoryreport a report inluding statistis about thenumber of onepts, onjetures et.subgoal(N) the Nth subgoal that was introduedsubgoals the set of subgoals of the onjeturestable(N) the data table for the Nth onepttables the set of data tables for all oneptstheorems the proved theorems in the theorytree(N) the onstrution history of onept Nweights(N) the set of weights for measuring oneptsand onjeturesTable A.2 The print interfae



312 Appendix A. User Manual for HR1.11Command Constrution history portrayed to sreenonstrution onstrution of the entire theory (nothistory reommended for large theories)onstrution onstrution of the entire theory withhistory with onjetures onjetures also shownonstrution the history of all onepts derivedhistory from(N) from onept Nonstrution onstrution of all onepts uphistory(omplexity,N). to omplexity Nonstrution onstrution of all onepts whih ahievedhistory(�rst ategorisations) their ategorisation �rstonstrution onstrution of all onepts whih ahieve thehistory(lassi�ations) gold standard ategorisationTable A.3 Constrution history view ommandsThis an also be used to visualise the onstrution of onjetures. Forexample, suppose onjeture 10 is an equivalene onjeture, then the om-mand: view::onstrution history(onjeture,10).will produe a onstrution history for the onjeture, with a dotted line join-ing the equivalent onepts. There are more ways in whih the onstrutionhistory an be used, as presented in Table A.3.Our seond use of Dot is in graph theory, where we use it to visualise theonepts produed, whih an be more revealing than their de�nitions. Theommand to produe a diagram for onept number N is:view::gt onept(N).For example, HR re-invents the onept of graphs with no endpoints (losedgraphs), and produes the diagram in Figure A.2 when asked to highlightwhih of the graphs in its theory have this property. We see that it drawsboxes around those graphs with the property. Similarly, for onepts desrib-ing properties of nodes or edges, it highlights those nodes/edges whih havethe property, and for numerial invariants of graphs, it displays the numbernext to the graph.If there are more example graphs available to HR than those in the theory(i.e. a set HR an aess to �nd ounterexamples to onjetures), then we analso ask HR to look in this set and identify all those graphs of a partiulartype. The ommand: view::all graphs of type(N).will produe a diagram similar to the one in Figure A.2 but ranging over thelarger set, identifying graphs with the property presribed by onept N.The �nal set of ommands available with the view interfae are thosewhih invoke the GNUplot program to draw bar harts and line graphs like
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Figure A.2 Conept diagram for losed graphsthose given in Chapter 11. The graphs drawn range over either the onepts,onjetures or theory formation steps, and reord a numerial measure ofthe onept/onjeture. Also, HR an alulate the average over the �rst nonepts/onjetures and plot this instead of the individual measures.The ommands available are:view::onept_statistis(W).view::onept_statistis(average,W).view::onjeture_statistis(W).view::onjeture_statistis(average,W).view::step_statistis(W).view::step_statistis(average,W).In the ase of onept statistis, W must be a measure of the onepts, namelyone of: appliability omplexity disriminationinvariane total sore number of onjeturesdisrimination+invarianeWe inlude disrimination+invariane as a measure beause this is often ofinterest when trying to �nd a onept whih ahieves a partiular ategori-sation. In eah the ase of onjeture statistis, the W must be a measure ofthe onjetures, namely one of:proof length omplexity appliability surprisingnessFor step statistis, any onept or onjeture measure above an be given.As an example, we note that the ommand:view::onept statistis(average,omplexity).will produe a graph showing the average omplexity of the �rst n onepts.



314 Appendix A. User Manual for HR1.11A.5.3 Finding Conepts and ConjeturesThe onept interfae is also useful for investigating a theory. The om-mands for this are of the form:onept(C)::property(P).where C is the number of a onept and P is the value of a property ofonepts. This an be used in two ways: if C is instantiated to a partiularonept number, then HR will �nd the value P for that onept. For example,the ommand: onept(10)::arity(A).will return the arity for onept number 10.However, if C is left uninstantiated, but P is given a value, then HR willattempt to �nd a onept with that value for property P. For example, theommand: onept(X)::arity(3).will return a onept number whih has arity 3. Using the ; key, the useran see all suh onepts as HR will enumerate them one by one. This fun-tionality is useful for �nding onepts of a partiular nature in the theory.We often use it in onjuntion with the print interfae. For example, if wewanted to identify a onept with exatly 17 onjetures, we would use thefollowing ommand:onept(X)::number of onjetures(17), print::onept(X).The set of properties for the onept interfae are given in Table A.4.Similarly, the onjet interfae is used to �nd properties of onjeturesand �nd onjetures with a partiular property. The general format is:onjet(C)::property(P).and the set of properties whih are available is given in Table A.5. For exam-ple, the ommand: onjet(X)::proof len(23).will return all theorems proved with a proof length from Otter of 23.



A.5 Investigating Theories 315BOOLEAN OUTPUTProperty Query returnslassi�ation whether this onept ahieves the gold standardlassi�ationfat whether this onept is a fat (as de�ned in x6.9.1)�rst at whether this onept ahieves its ategorisation �rsthas onjeture whether this onept has any onjeturesNUMERICAL OUTPUTProperty Query returnsappliability(N) the appliability of the oneptarity(N) the arity of the oneptomplexity(N) the omplexity sore of this oneptonjeture sore(N) what this onept sores when assessed usingthe onjetures it appears indisrimination(N) the disrimination sore for the oneptinvariane(N) the invariane sore for the oneptnovelty(N) the novelty sore for the oneptnumber of the number of onjetures this onept isonjetures(N) involved innumber of user the number of user-given onepts from whih thegiven anestors(N) onept is derivedparsimony(N) the parsimony of the oneptprodutivity(N) the produtivity of the oneptrank(N) the rank in terms of interestingness of the oneptstep onstruted(N) the theory formation step number when theonept was builttotal sore(N) the overall sore alulated for the oneptOTHER CONCEPTS OUTPUTProperty Query returnsanestors(L) the set of onepts from whih this one is builthildren(L) the set of onepts built diretly from this onedesendants(L) the set of onepts with this one their onstrution pathuser given the set of user-given onepts from whih this oneptanestors(L) is builtMISCELLANEOUS OUTPUTProperty Query returnsentities(L) the list of entities to whih this onept appliesategorisation(L) the ategorisation produed by the oneptonjetures(L) the set of onjeture numbers the onept is involved inhistory(L) the onstrution history of the oneptprodrule used(W) the name of the prodution rule used to onstrutthe onepttable(L) the data table of the onepttypes(L) the types in the olumns of the data table ofthe oneptTable A.4 The onept interfae



316 Appendix A. User Manual for HR1.11Property Query returnsappliability(N) the appliability of the onjetureaxioms used(L) the set of axioms used to prove the onjetureomplexity(N) the omplexity of the onjetureonepts involved(L) the onepts involved in the onjetureonstrution(L) the onstrution whih led to the onjetureis otter ompatible whether the onjeture is in a format aeptableto Ottermeasurements(L) the full list of measurements for this onjetureproof length(N) the length of the proof Otter found for the theoremproof status(W) W is either disproved, max proofs, max seondsor sos. These are taken from Otter's output.sos means Otter has failed and so has MACErank(N) the rank in terms of interestingness of this onjeturesubgoals(L) the list of subgoals of this onjeturesurprisingness(N) the surprisingness sore for this onjetureto onept(N) the number of the old onept that thisequivalene onjeture re-de�nestotal sore(N) the overall sore for this onjeturetype(W) W is either iff (equivalene), non-exists,implies or appliesTable A.5 The onjet interfaeA.5.4 Making More ConjeturesAs disussed in x7.2 and x7.4, HR does not make impliation or appliabilityonjetures during theory formation, but the user an ask for these after atheory has been formed.The ommand: appliability onjetures(N).will produe a set of appliability onjetures by �nding onepts whih areappliable to N or fewer entities. For example, if working in number theorywith the numbers 1 to 30, setting N to 2 in the above ommand will resultin HR produing a set of onjeture statements of the form:C. Definition(C) is satisfied by only [X,Y℄where C is a onept whih only applies to two integers, namely X and Y.The ommand:print::impliation onjetures(lh,C).will produe impliation onjetures of the form:X ) C



A.5 Investigating Theories 317by �nding onepts, X whih have data tables ontained in the data table ofonept C. Similarly, the ommand:print::impliation onjetures(rh,C).will produe impliation onjetures of the form:C ) XHowever, these often produe too many onjetures, and it is neessaryto redue the number using the surprisingness measure. To do this, the om-mand: set::impliation surprisingness(N).will set the threshold for surprisingness to N. We also supply some ommandsfor using the Enylopedia of Integer Sequenes to generate onjetures abouta hosen onept, C, as disussed in x7.5. Firstly, the onept must be of theorret type to be interpreted as a sequene. Then the ommand:sequene(C)::extend up to(N).will extrapolate the sequene from 1 to N . To relate this to sequenes in theEnylopedia, we �rst need the ommand:eis::load sequenes.Next the ommand: eis::assert new sequene(C,N).adds sequene C to the (loal) Enylopedia, with C extended up to N . Alsothe ommand: eis::details(ANumber).will give the details from the Enylopedia about sequene ANumber. Finally,the ommand: print::missing number types(N).will identify all those sequenes in HR's theory whih desribe types of num-bers and are missing from the Enylopedia (with the sequenes alulatedbetween the numbers 1 and N).The ommands to �nd subsequenes, disjoint sequenes and sequenes`less than' C, are respetively:eis::subsequenes of(C). eis::sequenes disjoint to(C).eis::sequenes leq(C).



318 Appendix A. User Manual for HR1.11Finally, we an prune the output by setting measures using the ommand:eis::set(Measure,Value).This will set the threshold for Measure to be Value. At present, the measurean be one of:term overlap min term overlap max density maxdensity min number of terms max number of terms minrange overlap min range overlap max differene mindifferene maxA.6 Help for a New UserThe ommand: help::me. provides a set of four help setions. In eah se-tion, HR gives a list of ommands for a partiular interfae and asks the userto hoose one of them. It then provides a few sentenes about the ommand,inluding the syntax and what it does. For example, the help informationabout the set::mode ommand is the following:### set::mode/1 ###set::mode(+ModeName).Allows you to retrieve a list of settings previouslystored using the set::save_mode(+ModeName) ommand.The help funtionality is at present very basi and we hope to improve uponthis in future versions of HR.We have also set up a series of demonstration sessions and an interfaefor their use. For example, there is a demonstration session for graph theoryalled graph demo1 whih an be run as soon as HR has been loaded, usingthis ommand: demo(graph demo1)::go.This will guide the user through the demonstration, pausing after eah om-mand has been issued to ask whether the user is ready. Note that the replyshould be either y. to ontinue or n. to end the demonstration (the fullstop is required). Finally, we have a detailed set of web pages about HR,whih an be found here:http://www.dai.ed.a.uk/~simono/researh/hr



Appendix B. Example Sessions
0, 0, 1, 0, 2, 0, 3, 1, 1, 2, 4, 0, 5, 3, 4, 0, 6, 1, 7, 2, 5, 6, 8, 0, : : :A047983. f(n) = jfa < n : �(a) = �(n)gjWe present four sessions using HR1.11 in graph theory, group theory, semi-group theory and number theory in xB.1 to xB.4 respetively. For eah session,we provide an overview of the funtionality we wish to highlight, followed bythe session output and a ommentary on some of the more interesting eventswhih ourred in the session. Eah session is annotated with letters in the lefthand margin and the ommentary disusses events ourring where the let-ters are plaed. In the ommentary, we provide page numbers relating eventsin the session to the relevant text in the book body and/or the manual.Due to spae onsiderations, we have edited the session output to ondensethe text. This has mostly involved removing entire setions of the sessionoutput. The edited sessions are still detailed enough to give a good sense ofwhat HR is doing, and for eah setion removed, we provide a note in theommentary desribing what was removed. The entire unedited sessions areavailable here:http://www.dai.ed.a.uk/~simono/researh/thesis/appendixbUnfortunately, again due to spae limitations, we annot provide sessionsshowing all of HR's funtionality. In the session desribed in xB.1, we usegraph theory to show some general features of HR. In xB.2, we show theyle of mathematial ativity that HR performs. In xB.3, we highlight morefeatures of theory formation, inluding HR's forward haining mehanism toprove theorems and the use of ounterexamples to disprove old onjetures.Finally, in xB.4, we provide a session in number theory, where the Enylo-pedia of Integer Sequenes is used to provide an interesting onjeture aboutan integer sequene that HR invents. To run these sessions, typedemo(demo name)::go.at HR's prompt (where demo name is one of graph demo1, group demo1,semigroup demo1 or number demo1).



320 Appendix B. Example SessionsB.1 Graph Theory Short SessionWe use this session to illustrate some of the basi ommands for starting asession and investigating the output. We also explain some of the terms inHR's output. Finally, it provides an opportunity to show how HR produesgraphial representations to help illustrate the onepts. The ommands weused for this session were the following:1. set::mode(graph_default).2. set::onept_weight(omprehensibility,0.8).3. set::onept_weight(produtivity,0.0).4. set::onept_weight(novelty,0.2).5. data(graph)::from_file(onneted_graph).6. onstrut(100,onepts).7. print::entity_types.8. view::gt_onept(95).9. view::all_graphs_of_type(95).10. view::onstrution_history(95).B.1.1 Session OutputSICStus 3 : #5: 1996 Ot 15HR1.11 is loaded. Please type help::me. for help.yesA | ?- set::mode(graph_default).ounterexamples=[no℄keep_onjetures=[no℄sort_onjetures=[no℄prodrules=[[exists,math,forall,onjunt,size,split,negate,ommon℄℄omplex_max=[8℄onept_weight=[omprehensibility,0.2℄onept_weight=[novelty,0.6℄onept_weight=[produtivity,0.2℄sort_onepts=[yes℄split_values=[[1,2℄℄yesB | ?- set::onept_weight(omprehensibility,0.8).onept_weight=[omprehensibility,0.8℄yes| ?- set::onept_weight(produtivity,0.0).onept_weight=[produtivity,0.0℄yes| ?- set::onept_weight(novelty,0.2).onept_weight=[novelty,0.2℄yesC | ?- data(graph)::from_file(onneted_graph).1. graph2. node3. edge4. edge_nodeyesD | ?- onstrut(100,onepts).E (5) [G,N℄ : N = |{n1 : node(n1)}|F (6) [G℄ : (exists e1 (edge(e1)))(7) [G,N℄ : N = |{e1 : edge(e1)}|(8) [G,n1℄ : node(n1) & (exists e1 (edge(e1)))(9) [G,e1℄ : (all n2 (n2 is on e1))(10) [G,n1℄ : (all e2 (n1 is on e2))G Top 20 onepts: 4 3 2 6 7 5 8 9 10



B.1 Graph Theory Short Session 321Top 20 live onepts: 4(1) 3 2 7 5 8 9 10Sorted Prodution Rules: ommon onjunt exists forall math negate size split(11) [G,e1,n1,n2℄ : (n1 is on e1 & n2 is on e1)(12) [G,e1,e2,n1℄ : (n1 is on e1 & n1 is on e2)(13) [G,e1,n1℄ : n1 is on e1 & (all n3 (n3 is on e1))(14) [G,e1,n1℄ : n1 is on e1 & (all e3 (n1 is on e3))(15) [G,N℄ : N = |{(e1 n1) : n1 is on e1}|(16) [G,e1,N℄ : N = |{n1 : n1 is on e1}|(17) [G,n1,N℄ : N = |{e1 : n1 is on e1}|(18) [G℄ : 1 = |{e1 : edge(e1)}|(19) [G℄ : 2 = |{e1 : edge(e1)}|(20) [G,e1,n1℄ : n1 is on e1 & 2 = |{e2 : edge(e2)}|Top 20 onepts: 2 3 4 6 5 8 7 11 12 15 16 17 10 19 9 18 14 13 20Top 20 live onepts: 2(1) 3 4 6 5 8 7 11 12 15 16 17 10 19 9 18 14 13 20Sorted Prodution Rules: ommon onjunt exists forall math negate size split(21) [G,n1℄ : node(n1) & 2 = |{e1 : edge(e1)}|(22) [G,n1℄ : node(n1) & 1 = |{e1 : edge(e1)}|(23) [G,e1℄ : edge(e1) & 2 = |{e2 : edge(e2)}|(24) [G,N℄ : N = |{n1 : node(n1)}| & N = |{e1 : edge(e1)}|(25) [G,N℄ : N = |{n1 : node(n1)}| & N = |{(e1 n2) : n2 is on e1}|(26) [G,N℄ : N = |{n1 : node(n1)}| & 2 = |{e1 : edge(e1)}|(27) [G℄ : 1 = |{n1 : node(n1)}|(28) [G,n1℄ : node(n1) & 1 = |{n2 : node(n2)}|(29) [G,N℄ : N = |{n1 : node(n1)}| & 1 = |{n2 : node(n2)}|(30) [G,n1,n2℄ : ((exists e1 (n1 is on e1)) & (exists e2 (n2 is on e2)))Top 20 onepts: 2 3 4 5 6 7 8 11 12 15 16 17 10 27 30 9 18 19 14 28H Top 20 live onepts: 4(3) 7 8 11 12 15 16 17 10 27 30 9 18 19 14 2829 24 13 23Sorted Prodution Rules: ommon onjunt exists forall math negate size split(31) [G,N℄ : N = |{e1 : edge(e1)}| & 1 = |{e2 : edge(e2)}|(32) [G,N℄ : N = |{e1 : edge(e1)}| & 2 = |{e2 : edge(e2)}|(33) [G,N℄ : N = |{n1 : (exists e1 (n1 is on e1))}|(34) [G,e1,n1,n2℄ : (n1 is on e1 & n2 is on e1) & (all n4 (n4 is on e1))(35) [G,e1,n1,n2℄ : (n1 is on e1 & n2 is on e1) & 2 = |{e2 : edge(e2)}|I (36) [G,n1,n2℄ : (exists e1 ((n1 is on e1 & n2 is on e1)))(37) [G,n1,n2℄ : (all e2 ((n1 is on e2 & n2 is on e2)))(38) [G,N℄ : N = |{(e1 n1 n2) : (n1 is on e1 & n2 is on e1)}|(39) [G,e1,N℄ : N = |{(n1 n2) : (n1 is on e1 & n2 is on e1)}|(40) [G,e1,n1,N℄ : N = |{n2 : (n1 is on e1 & n2 is on e1)}|Top 20 onepts: 2 3 4 6 5 8 7 11 12 15 16 17 10 27 28 30 33 36 38 39Top 20 live onepts: 4(3) 5 7 11 12 15 16 17 10 27 28 30 33 36 38 3940 14 37 9Sorted Prodution Rules: ommon onjunt exists forall math negate size split(41) [G,e1,n1,n2℄ : (n1 is on e1 & n2 is on e1)& (all e3 ((n1 is on e3 & n2 is on e3)))(42) [G,n1,N℄ : N = |{(e1 n2) : (n1 is on e1 & n2 is on e1)}|(43) [G,n1,n2,N℄ : N = |{e1 : (n1 is on e1 & n2 is on e1)}|(44) [G,e1,e2,n1℄ : (n1 is on e1 & n1 is on e2) & (all e4 (n1 is on e4))(45) [G,e1,e2,n1℄ : (n1 is on e1 & n1 is on e2) & 1 = |{e3 : edge(e3)}|(46) [G,e1,e2,n1℄ : (n1 is on e1 & n1 is on e2) & 2 = |{e3 : edge(e3)}|(47) [G,e1,e2℄ : (exists n1 ((n1 is on e1 & n1 is on e2)))(48) [G,e1,e2℄ : (all n2 ((n2 is on e1 & n2 is on e2)))(49) [G,N℄ : N = |{(e1 e2 n1) : (n1 is on e1 & n1 is on e2)}|(50) [G,e1,N℄ : N = |{(e2 n1) : (n1 is on e1 & n1 is on e2)}|Top 20 onepts: 2 3 4 6 5 8 7 15 16 11 12 17 47 49 50 27 28 10 30 33Top 20 live onepts: 4(3) 5 7 15 16 11 12 17 47 49 50 27 28 10 30 3338 39 19 36Sorted Prodution Rules: ommon onjunt exists forall math negate size split(51) [G,N℄ : N = |{(e1 n1) : n1 is on e1}| & 2 = |{e2 : edge(e2)}|(52) [G,e1,e2,N℄ : (N = |{n1 : n1 is on e1}| & N = |{n2 : n2 is on e2}|)(53) [G,e1,N℄ : N = |{n1 : n1 is on e1}| & N = |{n2 : node(n2)}|(54) [G,e1,N℄ : N = |{n1 : n1 is on e1}| & N = |{e2 : edge(e2)}|(55) [G,N℄ : (all e2 (N = |{n1 : n1 is on e2}|))(56) [G,N,M℄ : M = |{e1 : N = |{n1 : n1 is on e1}|}|(57) [G,e1,e2,N℄ : N = |{n1 : (n1 is on e1 & n1 is on e2)}|(58) [G,e1,n1,N℄ : N = |{e2 : (n1 is on e1 & n1 is on e2)}|(59) [G,n1,N℄ : N = |{(e1 e2) : (n1 is on e1 & n1 is on e2)}|(60) [G,n1,N℄ : N = |{e1 : n1 is on e1}| & N = |{e2 : edge(e2)}|Top 20 onepts: 2 3 4 5 6 8 7 15 16 11 12 17 47 49 50 57 27 28 30 33Top 20 live onepts: 17(12) 47 49 50 57 27 28 30 33 10 38 39 52 56 918 19 36 40 42Sorted Prodution Rules: ommon onjunt exists forall math negate size split(61) [G,n1,N℄ : N = |{e1 : n1 is on e1}| & 2 = |{e2 : edge(e2)}|(62) [G,n1,N℄ : N = |{e1 : n1 is on e1}|& N = |{(e2 e3) : (n1 is on e2 & n1 is on e3)}|(63) [G,n1,N℄ : N = |{e1 : n1 is on e1}| & (all e3 (N = |{n2 : n2 is on e3}|))(64) [G,N℄ : (all n2 (N = |{e1 : n2 is on e1}|))



322 Appendix B. Example Sessions(65) [G,n1,N℄ : N = |{M : M = |{e1 : n1 is on e1}|}|(66) [G,n1℄ : 1 = |{e1 : n1 is on e1}|(67) [G,n1℄ : 2 = |{e1 : n1 is on e1}|(68) [G,e1,n1℄ : n1 is on e1 & 1 = |{e2 : n1 is on e2}|(69) [G,e1,n1℄ : n1 is on e1 & 2 = |{e2 : n1 is on e2}|(70) [G,e1,N℄ : N = |{n1 : n1 is on e1}| & (all n3 (N = |{e2 : n3 is on e2}|))Top 20 onepts: 2 3 4 6 5 8 7 15 16 11 12 17 66 67 47 49 50 57 27 28Top 20 live onepts: 16(9) 11 12 17 66 67 47 49 50 57 27 28 10 30 3365 38 39 52 56Sorted Prodution Rules: ommon onjunt exists forall math negate size split(71) [G,e1,n1,n2℄ : (n1 is on e1 & n2 is on e1) & 1 = |{e2 : n1 is on e2}|(72) [G,e1,n1,n2℄ : (n1 is on e1 & n2 is on e1) & 1 = |{e2 : n2 is on e2}|(73) [G,e1,n1,n2℄ : (n1 is on e1 & n2 is on e1) & 2 = |{e2 : n1 is on e2}|(74) [G,e1,n1,n2℄ : (n1 is on e1 & n2 is on e1) & 2 = |{e2 : n2 is on e2}|(75) [G,e1,e2,n1℄ : (n1 is on e1 & n1 is on e2) & 1 = |{e3 : n1 is on e3}|(76) [G,e1,e2,n1℄ : (n1 is on e1 & n1 is on e2) & 2 = |{e3 : n1 is on e3}|(77) [G,n1,N℄ : N = |{e1 : n1 is on e1}| & (all n3 (N = |{e2 : n3 is on e2}|))(78) [G,n1,n2℄ : (1 = |{e1 : n1 is on e1}| & 1 = |{e2 : n2 is on e2}|)(79) [G,n1℄ : 1 = |{e1 : n1 is on e1}| & 2 = |{e2 : edge(e2)}|J (80) [G℄ : (exists n1 (1 = |{e1 : n1 is on e1}|))Top 20 onepts: 2 3 4 6 5 8 7 15 16 47 49 50 57 11 12 17 27 28 10 30Top 20 live onepts: 2(1) 3 4 6 5 8 7 15 16 47 49 50 57 11 12 17 2728 10 30Sorted Prodution Rules: ommon onjunt exists forall math negate size split(81) [G,n1℄ : node(n1) & (exists n2 (1 = |{e1 : n2 is on e1}|))(82) [G,e1℄ : edge(e1) & (exists n1 (1 = |{e2 : n1 is on e2}|))(83) [G,e1,n1℄ : n1 is on e1 & (exists n2 (1 = |{e2 : n2 is on e2}|))(84) [G,N℄ : N = |{n1 : node(n1)}| & (exists n2 (1 = |{e1 : n2 is on e1}|))(85) [G,N℄ : N = |{e1 : edge(e1)}| & (exists n1 (1 = |{e2 : n1 is on e2}|))(86) [G,N℄ : N = |{(e1 n1) : n1 is on e1}|& (exists n2 (1 = |{e2 : n2 is on e2}|))(87) [G,e1,N℄ : N = |{n1 : n1 is on e1}|& (exists n2 (1 = |{e2 : n2 is on e2}|))(88) [G,e1,e2,e3℄ : ((exists n1 ((n1 is on e1 & n1 is on e2)))& (exists n2 ((n2 is on e1 & n2 is on e3))))(89) [G,e1,e2,e3℄ : ((exists n1 ((n1 is on e1 & n1 is on e3)))& (exists n2 ((n2 is on e2 & n2 is on e3))))(90) [G,e1,e2℄ : (exists n1 ((n1 is on e1 & n1 is on e2)))& (exists n2 (1 = |{e3 : n2 is on e3}|))Top 20 onepts: 2 3 4 6 5 8 7 15 16 11 12 17 27 28 10 30 33 47 49 50Top 20 live onepts: 11(10) 12 17 27 28 10 30 33 47 49 50 57 65 67 3839 52 56 64 66Sorted Prodution Rules: ommon onjunt exists forall math negate size split(91) [G,e1,n1,n2℄ : (n1 is on e1 & n2 is on e1)& (exists n3 (1 = |{e2 : n3 is on e2}|))(92) [G,e1,n1,n2℄ : (n1 is on e1 & n2 is on e1)& (1 = |{e2 : n1 is on e2}| & 1 = |{e3 : n2 is on e3}|)(93) [G,e1,e2,n1℄ : (n1 is on e1 & n1 is on e2)& (exists n2 (1 = |{e3 : n2 is on e3}|))(94) [G,n1℄ : (all e2 (n1 is on e2)) & 2 = |{e3 : n1 is on e3}|K (95) [G℄ : (exists n1 ((all e2 (n1 is on e2))))(96) [G,N℄ : N = |{n1 : (all e2 (n1 is on e2))}|(97) [G,e1℄ : edge(e1) & (exists n1 ((all e3 (n1 is on e3))))(98) [G,e1,n1℄ : n1 is on e1 & (exists n2 ((all e3 (n2 is on e3))))(99) [G,N℄ : N = |{n1 : node(n1)}| & (exists n2 ((all e2 (n2 is on e2))))(100) [G,n1℄ : (exists e1 (n1 is on e1)) & (exists n2 ((all e3 (n2 is on e3))))Top 20 onepts: 2 3 4 6 5 8 7 15 16 11 12 17 27 28 30 33 47 49 50 57Top 20 live onepts: 8(6) 7 15 16 11 12 17 27 28 30 33 47 49 50 57 6567 38 39 52Sorted Prodution Rules: ommon onjunt exists forall math negate size splityesL | ?- print::entity_types.1 [G℄ : graph(G)6 [G℄ : (exists e1 (edge(e1)))18 [G℄ : 1 = |{e1 : edge(e1)}|19 [G℄ : 2 = |{e1 : edge(e1)}|27 [G℄ : 1 = |{n1 : node(n1)}|80 [G℄ : (exists n1 (1 = |{e1 : n1 is on e1}|))95 [G℄ : (exists n1 ((all e2 (n1 is on e2))))yesM | ?- view::gt_onept(95).yesN | ?- view::all_graphs_of_type(95).yesO | ?- view::onstrution_history(95).yes



B.1 Graph Theory Short Session 323B.1.2 CommentaryEvent Desription See pagesA HR loads and the user selets the default settingsfor graph theory. 307B The user hanges the weights for the weightedsum of interestingness measures. The new settingsprefer more omprehensible onepts. 158, 306C The user hooses graph theory and loads the datafrom the onneted graph �le. This �le ontainsthe onneted graphs up to size 4 and 4 on-epts, namely graph, node, edge and edge node. 62, 307D The user asks HR to onstrut a theory ontaining100 onepts. 309E HR invents the onept of the number of nodes ofa graph using the size prodution rule. 81F HR distinguishes between the trivial graphs (withone node and no edges) and the other graphs.G HR sorts the onepts for the �rst time. Theearlier onepts are more omprehensible, henethey are more interesting with respet to theweights set by the user. 155
H The term \live onepts" means those oneptswhih have theory formation steps remaining(i.e. those whih an be built from). For someonepts, all the steps may be exhausted, henethey are not live. The notation 4(3) shows that4 is the most interesting live onept, but this isthe third most interesting overall.I HR re-invents the onept of adjaeny of nodesin a graph. 32J HR re-invents the onept of graphs with anendpoint. 32



324 Appendix B. Example SessionsEvent Desription See pagesK HR re-invents the onept of star graphs, forwhih there exists a node whih is on every edge. 32L The user asks HR to display all the oneptswhih are types of graphs. There are seven suhonepts. 310M The user asks for a graphial representation ofonept 95. The diagram produed, as shown inFigure B.2 identi�es whih of the 10 graphs havethe property presribed by onept 95. 310
N The user asks for a similar diagram as before,but this time using all the graphs up to size 6(whih HR has stored and uses for �nding oun-terexamples to false onjetures, a funtionalitynot shown in this simple session). The diagramprodued, as shown in Figure B.3 helps identifythat the onept desribes star graphs. 310
O The user asks for a diagram of the onstrutionhistory of onept 95. The diagram produed isgiven in Figure B.1. 98, 310

3. [G,e1] : edge(e1)

10. [G,n1] : (all e2 (n1 is on e2))

forall<2>

95. [G] : (exists n1 ((all e2 (n1 is on e2))))

exists<1>

4. [G,e1,n1] : n1 is on e1

forall<2>

Figure B.1 Constrution history of onept 95
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Figure B.2 Graphs up to size 5 desribed by onept 95 (the boxed graphs havethe property de�ned by onept 95)
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Figure B.3 Graphs up to size 6 desribed by onept 95B.2 Theory Formation Session in Group TheoryIn this session, we wished to highlight the yle of mathematial ativity thatHR undertakes, whereby onepts are formed and onjetures made about theonepts. Then, information arising from attempts to settle the onjeturesis used to re-assess the onepts, whih drives the heuristi searh. We hosegroup theory as this is the domain for whih theory formation was originallydeveloped. At the end of the session, the user investigates the onept whihHR has assessed as the most interesting, and Otter is given more time toprove a onjeture whih remains open.The ommands we used for this session were the following:1. set::mode(algebra_default).2. set::proof_attak(straight).3. data(group)::initialise(mae).4. onstrut(100,steps).5. print::onept(28).6. onept(28)::onjetures(A).7. onjet(38)::proof_len(A), onjet(45)::proof_len(B).8. onjet(49)::proof_len(A).9. onjet(49)::surprisingness(A).10. print::onjeture(49).11. print::table(28).12. print::ayley_table(1,'G04').13. print::ordered_theorems.14. print::open_onjetures.15. set::otter_time_limit(600).16. print::time, onjet(46)::prove, print::time.



B.2 Theory Formation Session in Group Theory 327B.2.1 Session OutputSICStus 3 #5: Tue Aug 26 10:14:51 BST 1997HR1.11 is loaded. Please type help::me. for help.A | ?- set::mode(algebra_default).sort_onepts=[yes℄sort_onjetures=[yes℄model_generator=[mae℄prodrules=[[exists,forall,math,negate,onjunt℄℄omplex_max=[6℄onept_weight=[appliability,0.2℄onept_weight=[novelty,0.3℄onept_weight=[produtivity,0.2℄onept_weight=[theorem,0.3℄theorem_weight=[proof_length,0.5℄theorem_weight=[surprisingness,0.5℄initial_onepts=[[element,pair,triple℄℄sort_marker=[step℄yesB | ?- set::proof_attak(straight).yesC | ?- data(group)::initialise(mae).Mae Generating First Model of Order: 1 G01all ax1 ax2 ax3 assoiativity: (ax1 * (ax2 * ax3) = (ax1 * ax2) * ax3).all ax1 identity: (ax1*id=ax1 & id*ax1=ax1).all ax1 inverse: (inv(ax1)*ax1=id & ax1*inv(ax1)=id).D 1. *2. id3. inv4. group5. element6. pair7. tripleE * | 0 |--+---+0 | 0 |--+---+id: 0,inv|0|0element: 0,yesF | ?- onstrut(100,steps).G 1. (exists a b  (a*b=)). max_proofs 2H 2. all a ((a=id) <-> ((exists b  (a*b=)))). sosMae generating ounterexample of order: 1 2 G02Cheking whether onjetures are disproved: 2:yes(New Conjeture = 3),* | 0 | 1 |--+---+---+0 | 0 | 1 |--+---+---+1 | 1 | 0 |--+---+---+id: 0,inv|0|1|0|1element: 0,1,3. all a ((exists b  (a*b=))). max_proofs 24. all a b ((exists  (a*b=))). max_proofs 1I 5. all a b ((exists  (a*=b))). max_proofs 26. all a ((exists b  (b*a=))). max_proofs 17. all a b ((exists  (*a=b))). max_proofs 48. all a ((exists b  (b*=a))). max_proofs 09. all a ((a=id) <-> (a*a=a)). max_proofs 8(8) [G,a,b℄ : a*a=b10. all a b ((a*a=b) <-> (a*b=a)). max_seondsMae generating ounterexample of order: 1 2 3 G03Cheking whether onjetures are disproved: 10:yes(New Conept = 9),(9) [G,a,b℄ : a*b=a* | 0 | 1 | 2 |--+---+---+---+0 | 0 | 1 | 2 |--+---+---+---+



328 Appendix B. Example Sessions1 | 1 | 2 | 0 |--+---+---+---+2 | 2 | 0 | 1 |--+---+---+---+id: 0,inv|0|1|2|0|2|1element: 0,1,2,Top 20 onepts: 2 5 1 3 8 9Top 20 live onepts: 2(1) 5 1 3 8 9Top 20 non theorems: 10 2Top 20 theorems: 9 7 5 3 1 6 4 8Sorted Prodution Rules: onjunt exists forall math negate11. (exists a (a=id)). max_proofs 0(10) [G,a℄ : -(a=id)(11) [G,a,b,℄ : a*b= & a=id(12) [G,a,b,℄ : a*b= & b=id(13) [G,a,b,℄ : a*b= & =idTop 20 onepts: 2 1 3 8 9 11 12 13 5 10Top 20 live onepts: 1(2) 3 8 9 11 12 13 10Top 20 non theorems: 10 2Top 20 theorems: 9 7 5 3 1 6 4 11 8Sorted Prodution Rules: onjunt exists forall math negate(14) [G,a,b,℄ : a*b= & a*=bJ 12. all a b  ((a*b=) <-> (a*b= & b*a=)). sosMae generating ounterexample of order: 1 2 3 4 5 6 G04Cheking whether onjetures are disproved: 12:yes(New Conept = 15),(15) [G,a,b,℄ : a*b= & b*a=* | 0 | 1 | 2 | 3 | 4 | 5 |--+---+---+---+---+---+---+0 | 0 | 1 | 2 | 3 | 4 | 5 |--+---+---+---+---+---+---+1 | 1 | 0 | 3 | 2 | 5 | 4 |--+---+---+---+---+---+---+2 | 2 | 4 | 0 | 5 | 1 | 3 |--+---+---+---+---+---+---+3 | 3 | 5 | 1 | 4 | 0 | 2 |--+---+---+---+---+---+---+4 | 4 | 2 | 5 | 0 | 3 | 1 |--+---+---+---+---+---+---+5 | 5 | 3 | 4 | 1 | 2 | 0 |--+---+---+---+---+---+---+id: 0,inv|0|1|2|3|4|5|0|1|2|4|3|5element: 0,1,2,3,4,5,(16) [G,a,b,℄ : a*b= & *a=b(17) [G,a,b,℄ : a*b= & b*=a(18) [G,a,b,℄ : a*b= & *b=a13. all a b  ((a*b= & =id) <-> (a*b= & b=inv(a))). max_proofs 10(19) [G,a,b,℄ : a*b= & =inv(a)14. all a b  ((a*b= & =id) <-> (a*b= & a=inv(b))). max_proofs 1415. all a b  ((a*b= & =inv(a)) <-> (a*b= & a=inv())). max_proofs 9(20) [G,a,b,℄ : a*b= & =inv(b)Top 20 onepts: 2 13 19 3 1 8 9 11 12 14 15 16 17 18 20 5 10Top 20 live onepts: 13(2) 19 3 1 8 9 11 12 14 15 16 17 18 20 10Top 20 non theorems: 12 10 2Top 20 theorems: 14 13 15 9 7 5 3 1 6 4 11 8Sorted Prodution Rules: onjunt exists forall math negate(21) [G,a,b,℄ : a*b= & =id & a=id16. all a b  ((a*b= & =id & a=id) <-> (a*b= & =id & b=id)). max_proofs 917. all a b  ((a*b= & =id) <-> (a*b= & =id & b=inv(a))). max_proofs 1418. all a b  ((a*b= & =id & a=id) <->(a*b= & =id & =inv(a))). max_proofs 1019. all a b  ((a*b= & =id) <-> (a*b= & =id & a=inv(b))). max_proofs 1120. all a b  ((a*b= & =id & a=id) <->(a*b= & =id & a=inv())). max_proofs 921. all a b  ((a*b= & =id & a=id) <->(a*b= & =id & =inv(b))). max_proofs 1222. all a b  ((a*b= & =id & a=id) <->(a*b= & =id & b=inv())). max_proofs 13(22) [G,a,b,℄ : a*b= & =id & a*a=b



B.2 Theory Formation Session in Group Theory 329(23) [G,a,b,℄ : a*b= & =id & a*a=K ..59. -(exists a b  (a*b= & =id & a=id & -(b=id))). max_proofs 660. (exists a b  (a*b= & =id & a=id)). max_proofs 061. all a ((a=id) <-> ((exists b  (a*b= & =id & a=id)))). max_proofs 8(35) [G,a,b℄ : (exists  (a*b= & =id & a=id))62. all a b (((exists  (a*b= & =id & a=id))) <->((exists d (a*d=b & b=id & a=id)))). max_proofs 1463. all a ((a=id) <-> ((exists b  (b*a= & =id & b=id)))). max_proofs 1364. all a b (((exists  (a*b= & =id & a=id))) <-> ((exists d (d*a=b & b=id & d=id)))). max_seondsL Mae generating ounterexample of order: 1 2 3 4 5 6 7 865. all a ((a=id) <-> ((exists b  (b*=a & a=id & b=id)))). max_proofs 8(36) [G℄ : (all a b  (a*b= & =id & a=id))(37) [G,a℄ : (all b  (a*b= & =id & a=id))M Top 20 onepts: 28 26 35 22 2 23 30 24 25 32 29 33 36 37 21 19 1 13 11 12Top 20 live onepts: 35(3) 21 19 1 13 11 12 14 15 16 17 18 20 3 8 9 10Top 20 non theorems: 12 10 2Top 20 open onjetures: 64 48 47 46 45 38 34Top 20 theorems: 49 63 40 43 41 36 14 65 61 42 35 37 33 22 44 13 21 62 17 15Sorted Prodution Rules: onjunt exists forall math negateyes| ?- print::onept(28).[G,a℄ : (exists b  (a*b= & =id & a*a=))yes| ?- onept(28)::onjetures(A).A = [38,45,49℄ ?yesN | ?- onjet(38)::proof_len(A), onjet(45)::proof_len(B).A = 0 ? B = 0 ?yes| ?- onjet(49)::proof_len(A).A = 32 ?yes| ?- onjet(49)::surprisingness(A).A = 6 ?yes| ?- print::onjeture(49).all a (((exists b  (a*b= & =id & a*a=))) <->((exists d e (d*e=a & a=inv(d) & e=id)))).yesO | ?- print::table(28).| G01 | 0 || G02 | 0 || G02 | 1 || G03 | 0 || G04 | 0 || G04 | 1 || G04 | 2 || G04 | 5 |yes| ?- print::ayley_table(1,'G04').* | 0 | 1 | 2 | 3 | 4 | 5 |--+---+---+---+---+---+---+0 | 0 | 1 | 2 | 3 | 4 | 5 |--+---+---+---+---+---+---+1 | 1 | 0 | 3 | 2 | 5 | 4 |--+---+---+---+---+---+---+2 | 2 | 4 | 0 | 5 | 1 | 3 |--+---+---+---+---+---+---+3 | 3 | 5 | 1 | 4 | 0 | 2 |--+---+---+---+---+---+---+4 | 4 | 2 | 5 | 0 | 3 | 1 |--+---+---+---+---+---+---+5 | 5 | 3 | 4 | 1 | 2 | 0 |--+---+---+---+---+---+---+yesP | ?- print::ordered_theorems.35. all a b (((exists  (a*=b & b=id & a*a=))) <->((exists d (d*a=b & b=id & d*d=a)))). 3749. all a (((exists b  (a*b= & =id & a*a=))) <->((exists d e (d*e=a & a=inv(d) & e=id)))). 3243. all a b  ((a*b= & =inv(a) & b=id) <->(a*b= & =inv(a) & a*b=a)). 1562. all a b (((exists  (a*b= & =id & a=id))) <->((exists d (a*d=b & b=id & a=id)))). 1417. all a b  ((a*b= & =id) <-> (a*b= & =id & b=inv(a))). 1414. all a b  ((a*b= & =id) <-> (a*b= & a=inv(b))). 14..37. (exists a b  (a*b= & =id & a*a=)). 133. (exists a b  (a*b= & =id & a*a=b)). 16. all a ((exists b  (b*a=))). 14. all a b ((exists  (a*b=))). 160. (exists a b  (a*b= & =id & a=id)). 044. (exists a b  (a*b= & =inv(a) & b=id)). 011. (exists a (a=id)). 0



330 Appendix B. Example Sessions8. all a ((exists b  (b*=a))). 0yesQ | ?- print::open_onjetures.34. all a (((exists b  (a*b= & =id & a*a=b))) <->((exists d e (d*a=e & e=id & d*d=a)))).38. all a (((exists b  (a*b= & =id & a*a=))) <->((exists d e (d*a=e & e=id & d*d=e)))).45. all a (((exists b  (a*b= & =id & a*a=))) <->((exists d e (a*d=e & e=inv(a) & d=id)))).46. all a b (((exists  (a*=b & b=id & a*a=b))) <->((exists d (a*b=d & d=inv(a) & b=id)))).47. all a b (((exists  (a*b= & =id & a*a=))) <->((exists d (a*d=b & b=inv(a) & d=id)))).48. all a ((a=id) <-> ((exists b  (b*a= & =inv(b) & a=id)))).64. all a b (((exists  (a*b= & =id & a=id))) <->((exists d (d*a=b & b=id & d=id)))).yesR | ?- set::otter_time_limit(600).yes| ?- print::time, onjet(46)::prove, print::time.Wed Jul 26 12:00:57 BST 200046. all a b (((exists  (a*=b & b=id & a*a=b))) <->((exists d (a*b=d & d=inv(a) & b=id)))). max_proofs 63Wed Jul 26 12:01:59 BST 2000yesB.2.2 CommentaryEvent Desription See pagesA HR loads and the user selets the default algebrasettings. 307B The user instruts HR not to break the onje-tures into subgoals, just to use Otter to prove thetheorem straight away. 122, 306C The user hooses group theory and asks HR touse MACE to onstrut a single group. 66, 307D HR extrats 4 onepts (*, id, inv and group)from MACE's output and adds three others: ele-ments, pairs of elements and triples of elements. 66, 307E MACE �nds the trivial group of size 1. 307F The user asks HR to onstrut a theory in 100steps. 309G HR makes its �rst onjeture { that the multipli-ation tables for groups are non-empty. 102H HR makes a false onjeture whih is disprovedwith a ounterexample of size 2. 133



B.2 Theory Formation Session in Group Theory 331Event Desription See pagesI HR makes onjetures 5 and 7, whih statethat every group is a quasigroup (i.e. that everyelement appears in every row and olumn). 102J HR makes the onjeture that all groups areAbelian. This is disproved by a ounterexampleof size 6 { the smallest non-Abelian group. 102, 133K We have removed 47 steps from the output. Inthis period, 11 onepts and 36 onjetures wereintrodued.L HR makes a onjeture whih Otter annot proveand MACE annot disprove in the time available. 102, 133M The theory formation session ends and HRassesses that onept 28 is the most interestingusing the weighted sum of measures. 159
N After looking at the de�nition for onept 28,whih are self-inversing elements, the user inves-tigates why onept 28 is interesting by lookingat the onjetures it is involved in. The thirdonjeture it is involved in (number 49) has along proof length and is surprising. 175, 315,316
O The user looks at the data table for onept 28and the multipliation table (onept 1) for groupG04, on�rming that the onept is self inversingelements. 310P The user prints the theorems in dereasing prooflength order. We see that onjeture 35 has aproof of length 37. 310, 169Q The user looks at the open onjetures in thetheory. 310R The user extends the time Otter is allowed tospend attempting a proof to 600 seonds, and triesto prove onjeture 46. Otter takes 62 seondsand produes a proof of length 63. 122, 305



332 Appendix B. Example SessionsB.3 Theory Formation Session in Semigroup TheoryIn this session we wanted to highlight the theorem proving and disprovingfuntionality of HR. In partiular, we show how HR splits equivalene on-jetures into impliation onjetures and ompiles a set of prime impliateswhih it uses to prove later theorems. Also, we show how a ounterexamplewhih has been introdued to disprove a onjeture also disproves a previ-ously open onjeture. Suh events are rare and often take a long time tohappen. For this reason, this session is fairly long and we have had to removemuh of the output for spae onsiderations. The ommands used were:1. set::mode(algebra_default).2. data(semigroup)::initialise(mae).3. onstrut(14, entities).B.3.1 Session OutputSICStus 3 #5: Tue Aug 26 10:14:51 BST 1997HR1.11 is loaded. Please type help::me. for helpA |?- set::mode(algebra_default).sort_onepts=[yes℄sort_onjetures=[yes℄model_generator=[mae℄prodrules=[[exists,forall,math,negate,onjunt℄℄omplex_max=[6℄onept_weight=[appliability,0.2℄onept_weight=[novelty,0.3℄onept_weight=[produtivity,0.2℄onept_weight=[theorem,0.3℄theorem_weight=[proof_length,0.5℄theorem_weight=[surprisingness,0.5℄initial_onepts=[[element,pair,triple℄℄sort_marker=[step℄B |?- data(semigroup)::initialise(mae).Mae Generating First Model of Order: 1 S01all ax1 ax2 ax3 assoiativity: (ax1 * (ax2 * ax3) = (ax1 * ax2) * ax3).C 1. *2. semigroup3. element4. pair5. tripleD * | 0 |--+---+0 | 0 |--+---+element: 0,E |?- onstrut(14,entities).1. (exists a b  (a*b=)). max_proofs semigroup 22. all a ((exists b  (a*b=))). max_proofs semigroup 23. all a b ((exists  (a*b=))). sos semigroupF Mae generating ounterexample of order: 1 2 3 4 5 6 7 84. all a b ((exists  (a*=b))). sos semigroupMae generating ounterexample of order: 1 2 S02Cheking whether onjetures are disproved: 3:no,4:yes(New Conept = 6),(6) [S,a,b℄ : (exists  (a*=b))* | 0 | 1 |--+---+---+0 | 0 | 0 |--+---+---+1 | 0 | 0 |--+---+---+



B.3 Theory Formation Session in Semigroup Theory 333element: 0,1,5. all a ((exists b  (b*a=))). max_proofs semigroup 16. all a b (((exists  (a*=b))) <-> ((exists d (d*a=b)))).all a b ( (exists  (a*=b)) -> (exists d (d*a=b)) ). sosall a b ( (exists  (*a=b)) -> (exists d (a*d=b)) ). sosMae generating ounterexample of order: 1 2 S03Cheking whether onjetures are disproved: 3:no,6:yes(New Conept = 7),(7) [S,a,b℄ : (exists  (*a=b))* | 0 | 1 |--+---+---+0 | 0 | 0 |--+---+---+1 | 1 | 1 |--+---+---+element: 0,1,(8) [S,a℄ : (exists b  (b*=a))7. all a (((exists b  (b*=a))) <-> (a*a=a)).all a ( (exists b  (b*=a)) -> a*a=a ). sosall a ( a*a=a -> (exists b  (b*=a)) ). max_proofs 0Mae generating ounterexample of order: 1 2 S04Cheking whether onjetures are disproved: 3:no,7:yes(New Conept = 9),(9) [S,a℄ : a*a=a* | 0 | 1 |--+---+---+0 | 0 | 1 |--+---+---+1 | 1 | 0 |--+---+---+element: 0,1,(10) [S,a,b℄ : a*a=b(11) [S,a,b℄ : a*b=aTop 20 onepts: 9 10 3 7 8 1 6 11Top 20 live onepts: 9(1) 10 3 7 8 1 6 11Top 20 non theorems: 7 6 4Top 20 open onjetures: 3Top 20 theorems: 2 1 5Sorted Prodution Rules: onjunt exists forall math negateG 8. (exists a (a*a=a)). max_seonds semigroupMae generating ounterexample of order: 1 2 3 4 5 6 7 8(12) [S℄ : (all b (b*b=b))(13) [S,a℄ : -(a*a=a)(14) [S,a℄ : a*a=a & (all  (*=))(15) [S,a,b℄ : a*a=b & b*b=a(16) [S,a,b℄ : a*a=b & (exists  d (*d=a))9. all a b ((a*a=b) <-> (a*a=b & (exists  d (*d=b)))).all a b ( a*a=b -> (exists  d (*d=b)) ). max_proofs 0H 10. all a b ((a*a=b & (exists  d (*d=a))) <-> (a*a=b & a*b=a)).all a b ( (exists  d (*d=a)) & a*a=b -> a*b=a ). sosall a b ( a*b=a -> (exists  d (*d=a)) ). max_proofs 0all a b ( a*a=b & a*b=a -> (exists  d (*d=a)) ).---------------------------------------------all a b ( a*b=a -> (exists  d (*d=a)) ).Mae generating ounterexample of order: 1 2 3 S05Cheking whether onjetures are disproved:3:no,8:no,10:yes(New Conept = 17),(17) [S,a,b℄ : a*a=b & a*b=a* | 0 | 1 | 2 |--+---+---+---+0 | 0 | 0 | 0 |--+---+---+---+1 | 0 | 0 | 0 |--+---+---+---+2 | 0 | 0 | 1 |--+---+---+---+element: 0,1,2,Top 20 onepts: 17 7 16 10 3 8 13 15 1 6 12 14 11 9Top 20 live onepts: 17(1) 7 16 10 3 8 13 15 1 6 14 11Top 20 non theorems: 10 7 6 4Top 20 open onjetures: 8 3Top 20 theorems: 2 1 5 9



334 Appendix B. Example SessionsSorted Prodution Rules: onjunt exists forall math negate11. all a b ((a*a=b & a*b=a) <-> (a*a=b & a*b=a & (exists  d (*d=a)))).12. all a b ((a*a=b & a*b=a) <-> (a*a=b & a*b=a & (exists  d (*d=b)))).all a b ( a*a=b & a*b=a -> (exists  d (*d=b)) ).---------------------------------------------all a b ( a*a=b -> (exists  d (*d=b)) ).13. all a b ((a*a=b & b*b=a) <-> (a*a=b & a*b=a & a*a=a)).all a b ( a*a=a & a*a=b -> b*b=a ). max_proofs 4all a b ( a*a=a & a*a=b & a*b=a -> b*b=a ).---------------------------------------------all a b ( a*a=a & a*a=b -> b*b=a ).all a b ( a*a=b & b*b=a -> a*a=a ). sosall a b ( a*a=b & b*b=a -> a*b=a ). sosMae generating ounterexample of order: 1 2 3 S06Cheking whether onjetures are disproved:3:no,8:no,13:yes(New Conept = 18),(18) [S,a,b℄ : a*a=b & a*b=a & a*a=a* | 0 | 1 | 2 |--+---+---+---+0 | 0 | 1 | 2 |--+---+---+---+1 | 1 | 2 | 0 |--+---+---+---+2 | 2 | 0 | 1 |--+---+---+---+element: 0,1,2,14. all a b ((a*a=b & a*b=a) <-> (a*a=b & a*b=a & b*b=b)).all a b ( a*a=b & a*b=a -> b*b=b ). max_proofs 315. (exists a b (a*a=b & a*b=a)). max_seonds semigroupMae generating ounterexample of order: 1 2 3 4 5 6 7 8(19) [S,a℄ : (exists b (a*a=b & a*b=a))16. all a ((a*a=a) <-> ((exists b (b*b=a & b*a=b)))).all a ( a*a=a -> (exists b (b*b=a & b*a=b)) ). max_proofs 0all a ( (exists b (b*b=a & b*a=b)) -> a*a=a ). max_proofs 4(20) [S℄ : (all a b (a*a=b & a*b=a))Top 20 onepts: 19 9 7 15 16 18 17 10 20 13 3 12 14 6 8 11 1Top 20 live onepts: 7(3) 15 16 17 10 13 3 14 6 8 11 1Top 20 non theorems: 13 10 7 6 4Top 20 open onjetures: 15 8 3Top 20 theorems: 16 2 1 5 14 9 12 11Sorted Prodution Rules: onjunt exists forall math negate(21) [S,a,b℄ : (exists  (*a=b)) & a*a=a(22) [S,a,b℄ : (exists  (*a=b)) & b*b=b(23) [S,a,b℄ : (exists  (*a=b)) & (exists d (d*b=a))17. all a b ((a*a=b) <-> ((exists  (*a=b)) & a*a=b)).all a b ( a*a=b -> (exists  (*a=b)) ). max_proofs 0(24) [S,a,b℄ : (exists  (*a=b)) & b*b=a(25) [S,a,b℄ : (exists  (*a=b)) & -(a*a=a)(26) [S,a,b℄ : (exists  (*a=b)) & -(b*b=b)(27) [S,a,b℄ : (exists  (*a=b)) & (all e (e*e=e))Top 20 onepts: 19 22 23 9 25 26 15 16 18 21 24 7 17 10 13 20 6 12 14 27Top 20 live onepts: 22(2) 23 25 26 15 16 21 24 7 17 10 13 6 14 3 8 11 1Top 20 non theorems: 13 10 7 6 4Top 20 open onjetures: 15 8 3Top 20 theorems: 16 2 1 5 14 17 9 12 11Sorted Prodution Rules: onjunt exists forall math negate(28) [S,a,b℄ : (exists  (*a=b)) & b*b=b & a*a=a(29) [S,a,b℄ : (exists  (*a=b)) & b*b=b & -(a*a=a)(30) [S,a,b℄ : (exists  (*a=b)) & b*b=b & (exists d e (d*e=a))18. all a b (((exists  (*a=b)) & b*b=b) <->((exists d (d*a=b)) & b*b=b & (exists e f (e*f=b)))).all a b ( a*a=a -> (exists  d (*d=a)) ). max_proofs 0all a b ( (exists  (*a=b)) -> (exists d e (d*e=b)) ). max_proofs 0all a b ( (exists  (*a=b)) & b*b=b -> (exists d e (d*e=b)) ).---------------------------------------------all a b ( b*b=b -> (exists  d (*d=b)) ).19. (exists a b ((exists  (*a=b)) & b*b=b)). max_seonds semigroupMae generating ounterexample of order: 1 2 3 4 5 6 7 820. all a ((exists b ((exists  (*a=b)) & b*b=b))). max_seonds semigroupMae generating ounterexample of order: 1 2 3 4 5 6 7 821. all a ((a*a=a) <-> ((exists b ((exists  (*b=a)) & a*a=a)))).all a ( a*a=a -> (exists b ((exists  (*b=a)) & a*a=a)) ). max_proofs 2



B.3 Theory Formation Session in Semigroup Theory 335all a ( (exists b ((exists  (*b=a)) & a*a=a)) -> a*a=a ). max_proofs -122. ((all b (b*b=b))) <-> ((all  d ((exists e (e*=d)) & d*d=d))).(all b (b*b=b)) -> (all  d ((exists e (e*=d)) & d*d=d)). max_seonds(all a b ((exists  (*a=b)) & b*b=b)) -> (all e (e*e=e)). max_proofs 0Mae generating ounterexample of order: 1 2 S07Cheking whether onjetures are disproved:3:no,8:no,15:no,19:no,20:no,22:yes(New Conept = 31),(31) [S℄ : (all a b ((exists  (*a=b)) & b*b=b))* | 0 | 1 |--+---+---+0 | 0 | 0 |--+---+---+1 | 0 | 1 |--+---+---+element: 0,1,Top 20 onepts: 15 16 19 21 23 24 28 30 7 22 9 25 31 10 17 12 14 18 26 27Top 20 live onepts: 15(1) 16 21 23 24 28 7 22 25 10 17 14 26 8 3 13 6 11 1Top 20 non theorems: 22 13 10 7 6 4Top 20 open onjetures: 20 19 15 8 3Top 20 theorems: 16 21 2 1 5 14 17 9 18 12 11Sorted Prodution Rules: onjunt exists forall math negate23. all a b ((a*a=b & a*b=a & a*a=a) <-> (a*a=b & b*b=a & a*a=a)).all a b ( a*a=a & a*a=b -> a*b=a ). max_proofs 4all a b ( a*a=a & a*a=b & b*b=a -> a*b=a ).---------------------------------------------all a b ( a*a=a & a*a=b -> a*b=a ).I 24. all a b ((a*a=b & a*b=a & a*a=a) <-> (a*a=b & b*b=a & b*b=b)).all a b ( a*a=a & a*a=b -> b*b=b ).---------------------------------------------all a b ( a*a=a & a*a=b -> a*b=a ).all a b ( a*a=b & a*b=a -> b*b=b ).all a b ( a*a=a & a*a=b & b*b=a -> b*b=b ).---------------------------------------------all a b ( a*a=a & a*a=b -> a*b=a ).all a b ( a*a=b & a*b=a -> b*b=b ).all a b ( a*a=a & a*a=b -> b*a=b ).---------------------------------------------all a b ( a*a=a & a*a=b -> b*b=a ).all a b ( a*a=a & a*a=b -> a*b=a ).all a b ( a*a=b & a*b=a -> b*b=b ).all a b ( b*b=b & b*b=a -> b*a=b ).all a b ( a*a=a & a*a=b & b*b=a -> b*a=b ).---------------------------------------------all a b ( a*a=a & a*a=b -> a*b=a ).all a b ( a*a=b & a*b=a -> b*b=b ).all a b ( b*b=b & b*b=a -> b*a=b ).all a b ( a*a=a & a*a=b & a*b=a -> b*b=b ).---------------------------------------------all a b ( a*a=b & a*b=a -> b*b=b ).25. all a b ((a*a=b & b*b=a) <-> (a*a=b & b*b=a & (exists  d (*d=a)))).all a b ( a*a=b & b*b=a -> (exists  d (*d=a)) ).---------------------------------------------all a b ( b*b=a -> (exists  d (*d=a)) ).26. all a b ((a*a=b & b*b=a) <-> (a*a=b & b*b=a & (exists  d (*d=b)))).all a b ( a*a=b & b*b=a -> (exists  d (*d=b)) ).---------------------------------------------all a b ( a*a=b -> (exists  d (*d=b)) ).(32) [S,a,b℄ : a*a=b & b*b=a & -(a*a=a)27. all a b ((a*a=b & b*b=a & -(a*a=a)) <-> (a*a=b & b*b=a & -(b*b=b))).all a b ( a*a=b & -(b*b=b) -> -(a*a=a) ). max_proofs 2all a b ( a*a=b & b*b=a & -(b*b=b) -> -(a*a=a) ).---------------------------------------------all a b ( a*a=b & -(b*b=b) -> -(a*a=a) ).all a b ( a*a=b & b*b=a & -(a*a=a) -> -(b*b=b) ).---------------------------------------------all a b ( b*b=a & -(a*a=a) -> -(b*b=b) ).28. (exists a b (a*a=b & b*b=a)). max_seonds semigroupMae generating ounterexample of order: 1 2 3 4 5 6 7 8(33) [S,a℄ : (exists b (a*a=b & b*b=a))Top 20 onepts: 18 22 16 19 21 23 24 28 30 32 33 7 17 15 10 25 31 9 12 14Top 20 live onepts: 22(2) 16 21 23 24 28 33 7 17 15 10 25 9 14 26 13 8 3 6 11



336 Appendix B. Example SessionsTop 20 non theorems: 22 13 10 7 6 4Top 20 open onjetures: 28 20 19 15 8 3Top 20 theorems: 16 21 24 23 2 1 14 5 27 17 9 26 25 18 12 11Sorted Prodution Rules: onjunt exists forall math negate(34) [S,a℄ : (all  ((exists d (d*a=)) & *=))(35) [S,a℄ : (all  ((exists d (d*=a)) & a*a=a))(36) [S,a,b℄ : -((exists  (*a=b)) & b*b=b)29. all a b ((a*a=b & a*b=a & a*a=a) <->(a*a=b & (exists  d (*d=a)) & a*a=a)).all a b ( (exists  d (*d=a)) & a*a=a & a*a=b -> a*b=a ).---------------------------------------------all a b ( a*a=a & a*a=b -> a*b=a ).all a b ( a*a=a & a*b=a -> (exists  d (*d=a)) ).---------------------------------------------all a b ( a*b=a -> (exists  d (*d=a)) ).all a b ( a*a=a & a*a=b -> (exists  d (*d=a)) ).---------------------------------------------all a b ( a*a=a -> (exists  d (*d=a)) ).all a b ( a*a=a & a*a=b & a*b=a -> (exists  d (*d=a)) ).---------------------------------------------all a b ( a*b=a -> (exists  d (*d=a)) ).(37) [S,a,b℄ : a*a=b & (exists  d (*d=a)) & b*b=b30. all a b ((a*a=b & (exists  d (*d=a)))<-> (a*a=b & (exists e f (e*f=a)) & (exists g h (g*h=b)))).all a b ( (exists  d (*d=a)) & a*a=b -> (exists e f (e*f=b)) ).---------------------------------------------all a b ( a*a=b -> (exists  d (*d=b)) ).31. (exists a b (a*a=b & (exists  d (*d=a)))). max_proofs semigroup 132. all a (((exists b  (b*=a))) <->((exists d (a*a=d & (exists e f (e*f=a)))))).all a ( (exists b  (b*=a)) ->(exists d (a*a=d & (exists e f (e*f=a)))) ). max_proofs 5all a ( (exists b (a*a=b & (exists  d (*d=a)))) ->(exists e f (e*f=a)) ). max_proofs 0Top 20 onepts: 35 37 36 18 22 16 19 21 23 24 28 30 33 7 32 15 10 31 25 17Top 20 live onepts: 36(3) 16 21 23 24 28 33 7 15 10 25 17 9 14 26 8 13 3 6 11Top 20 non theorems: 22 13 10 7 6 4Top 20 open onjetures: 28 20 19 15 8 3Top 20 theorems: 32 16 31 21 29 24 23 2 1 14 5 27 30 17 9 26 25 18 12 11Sorted Prodution Rules: onjunt exists forall math negate(38) [S℄ : (exists a b (-((exists  (*a=b)) & b*b=b)))(39) [S,a℄ : (exists b (-((exists  (*a=b)) & b*b=b)))(40) [S,a℄ : (exists b (-((exists  (*b=a)) & a*a=a)))33. all a (((exists b (a*a=b & b*b=a))) <->((exists  (*=a & (exists d e (d*e=)))))).all a ( (exists b (a*a=b & b*b=a)) ->(exists  (*=a & (exists d e (d*e=)))) ). max_proofs 0all a ( (exists b (b*b=a & (exists  d (*d=b)))) ->(exists e (a*a=e & e*e=a)) ). max_seondsJ Mae generating ounterexample of order: 1 2 3 4 S08Cheking whether onjetures are disproved:3:no,8:no,15:no,19:no,20:no,28:no,33:yes(New Conept = 41),(41) [S,a℄ : (exists b (b*b=a & (exists  d (*d=b))))* | 0 | 1 | 2 | 3 |--+---+---+---+---+0 | 0 | 0 | 0 | 0 |--+---+---+---+---+1 | 0 | 0 | 0 | 1 |--+---+---+---+---+2 | 0 | 0 | 1 | 2 |--+---+---+---+---+3 | 0 | 1 | 2 | 3 |--+---+---+---+---+element: 0,1,2,3,K ...(205) [S,a,b℄ : a*a=b & (all d ((exists e f (e*f=d))))(206) [S,a,b℄ : a*a=b & (exists  (a*=a))(207) [S,a,b℄ : a*a=b & (exists  (b*=b))(208) [S,a,b℄ : a*a=b & -(a*a=a)(209) [S,a,b℄ : a*a=b & -(b*b=b)(210) [S,a,b℄ : a*a=b & (exists  (*a=a))L 202. all a b ((a*a=b & (exists  (b*=b))) <-> (a*a=b & (exists d (d*b=b)))).all a b ( a*a=b & (exists  (*b=b)) -> (exists d (b*d=b)) ). sosall a b ( a*a=b & (exists  (b*=b)) -> (exists d (d*b=b)) ). max_seondsMae generating ounterexample of order: 1 2 3 4 5 S14



B.3 Theory Formation Session in Semigroup Theory 337Cheking whether onjetures are disproved:3:no,8:no,15:no,19:no,20:no,28:no,37:no,43:no,46:no,59:no,70:no,77:no,79:no,83:no,88:no,89:no,90:no,91:no,93:no,95:no,96:no,99:no,103:no,105:no,107:no,111:no,112:no,M 121:yes(New Conept = 211),129:no,130:no,132:no,142:no,143:no,145:no,158:no,167:no,173:no,184:no,195:no,201:no,202:yes(New Conept = 212),(211) [S,a,b℄ : (exists  (a*=b)) & (exists d (d*a=b)) & (exists e (b*e=b))(212) [S,a,b℄ : a*a=b & (exists  (*b=b))* | 0 | 1 | 2 | 3 | 4 |--+---+---+---+---+---+0 | 0 | 0 | 0 | 0 | 0 |--+---+---+---+---+---+1 | 0 | 0 | 0 | 0 | 0 |--+---+---+---+---+---+2 | 0 | 0 | 0 | 1 | 0 |--+---+---+---+---+---+3 | 0 | 0 | 0 | 1 | 0 |--+---+---+---+---+---+4 | 0 | 1 | 2 | 2 | 4 |--+---+---+---+---+---+element: 0,1,2,3,4,yesB.3.2 CommentaryEvent Desription See pagesA HR loads and the user selets the default algebrasettings. 307B The user hooses semigroup theory and asks HRto use MACE to onstrut a single semigroup. 66, 307C HR extrats 2 onepts (* and semigroup) fromMACE's output and adds three others: elements,pairs of elements and triples of elements. 307D MACE �nds the trivial semigroup of size 1. 307E The user asks HR to onstrut a theory until ithas introdued 14 semigroups as ounterexamplesto false onjetures. 309
F HR makes a false onjeture { that semigroupshave the olumn-wise quasigroup property {whih is disproved with a ounterexample of size2 where the body of the multipliation tableontains only the element 0. 133



338 Appendix B. Example SessionsEvent Desription See pagesG HR makes a onjeture whih Otter annot proveand MACE annot disprove in the time available. 102, 133H HR makes a false onjeture whih requires asemigroup of size 3 to disprove it. 133I HR uses its prime impliates to prove a theoremwithout using Otter. The onjeture is brokeninto 5 impliation onjetures. These are statedabove the lines and HR gives the proofs below thelines. 124, 127J HR makes a false onjeture whih requires asemigroup of size 5 to disprove it. 133K We have removed 334 steps from the output. Dur-ing this time, 165 onepts and 169 onjetureswere introdued.L HR makes onjeture number 202 whih is dis-proved with a ounterexample of size 5. This isthe 14th semigroup in the theory. 133M The ounterexample whih disproved onjeture202 also disproved onjeture 121. This leads tothe introdution of onepts number 211 and 212. 137B.4 Inventing and Investigating an Integer SequeneIn this session we rereate the session whih led to the invention of the oneptof integers for whih the number of divisors is prime and the onjeture that,given an integer, if the sum of divisors is prime, then the number of divisorsis prime. To do this, we asked HR to produe 50 onepts in number theoryand then to identify those missing from the Enylopedia. We then looked indetail at one of the sequenes and asked HR to �nd subsequenes of this inthe Enylopedia. The ommands used for this session were:



B.4 Inventing and Investigating an Integer Sequene 3391. set::mode(number_default).2. data(integer)::from_file(smalldiv).3. onstrut(50,onepts).4. eis::load_sequenes.5. print::missing_number_types(100).6. eis::assert_new_sequene(47,500).7. eis::set(term_overlap_min,7), eis::set(term_overlap_max,10).8. eis::subsequenes_of(47).9. eis::details('A023194').10. onept(47)::learn_from_srath(_).11. eis::funtion('A023194',_,Num), \+ prediate(47,[Num℄).B.4.1 Session OutputSICStus 3 #5: Tue Aug 26 10:14:51 BST 1997HR1.11 is loaded. Please type help::me. for help.A | ?- set::mode(number_default).proofs=[no℄ounterexamples=[no℄sort_onjetures=[no℄prodrules=[[exists,math,forall,onjunt,size,split,negate℄℄omplex_max=[8℄onept_weight=[omprehensibility,0.2℄onept_weight=[novelty,0.6℄onept_weight=[produtivity,0.2℄sort_onepts=[yes℄split_values=[[1,2℄℄yesB | ?- data(integer)::from_file(smalldiv).1. integer2. divisor3. multipliationyesC | ?- onstrut(50,onepts).(4) [I,N℄ : N = |{d1 : d1|I}|(5) [I℄ : 2|I(6) [I,d1℄ : d1|I & d1 = |{d2 : d2|I}|(7) [I,d1℄ : d1|I & I = |{d2 : d2|d1}|(8) [I,d1℄ : d1|I & 2|I(9) [I,d1℄ : d1|I & 2|d1(10) [I℄ : I=I*ID Top 20 onepts: 4 5 10 6 7 2 3 8 9Top 20 live onepts: 4(1) 5 10 6 7 2 3 8 9Top 20 open onjetures: 1 2 3 4 5 6Sorted Prodution Rules: onjunt exists forall math negate size split(11) [I,N℄ : N = |{d1 : d1|I}| & 2|I(12) [I,N℄ : N = |{d1 : d1|I}| & 2|N(13) [I,N℄ : N = |{d1 : d1|I}| & I=I*I(14) [I℄ : I = |{d1 : d1|I}|(15) [I℄ : 2 = |{d1 : d1|I}|(16) [I,N℄ : N = |{d1 : d1|I}| & N = |{d2 : d2|N}|(17) [I,N℄ : N = |{d1 : d1|I}| & 2 = |{d2 : d2|I}|(18) [I,N℄ : N = |{d1 : d1|I}| & 2 = |{d2 : d2|N}|(19) [I℄ : 2|I & I = |{d1 : d1|I}|(20) [I℄ : -(2|I)Top 20 onepts: 6 7 4 11 12 16 18 14 19 5 8 9 20 2 17 15 3 13 10Top 20 live onepts: 6(1) 7 4 11 12 16 18 14 19 5 8 9 2 17 15 3 13 10Top 20 open onjetures: 1 2 3 4 5 6 7 8 9 10 11 12 13Sorted Prodution Rules: onjunt exists forall math negate size split(21) [I,d1℄ : d1|I & d1 = |{d2 : d2|I}| & 2|I(22) [I,d1℄ : d1|I & d1 = |{d2 : d2|I}| & -(2|I)(23) [I,d1℄ : d1|I & d1 = |{d2 : d2|I}| & 2 = |{d3 : d3|I}|(24) [I,d1℄ : d1|I & d1 = |{d2 : d2|I}| & 2 = |{d3 : d3|d1}|(25) [I℄ : (exists d1 (d1|I & d1 = |{d2 : d2|I}|))



340 Appendix B. Example Sessions(26) [I,d1℄ : -(d1|I & d1 = |{d2 : d2|I}|)(27) [I,N℄ : N = |{d1 : d1|I & d1 = |{d2 : d2|I}|}|(28) [I,d1℄ : -(d1|I & I = |{d2 : d2|d1}|)(29) [I,N℄ : N = |{d1 : d1|I & I = |{d2 : d2|d1}|}|(30) [I,d1℄ : d1|I & d1 = |{d2 : d2|I}| & -(d1|I & I = |{d3 : d3|d1}|)Top 20 onepts: 4 11 12 16 18 21 24 6 22 30 7 8 9 5 17 25 29 15 13 19Top 20 live onepts: 4(1) 11 12 16 18 21 24 6 22 30 7 8 9 5 17 29 15 13 19 23Top 20 open onjetures: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20Sorted Prodution Rules: onjunt exists forall math negate size split(31) [I,N℄ : N = |{d1 : d1|I}| & -(2|I)(32) [I,N℄ : N = |{d1 : d1|I}| & -(2|N)(33) [I,N℄ : N = |{d1 : d1|I}| & 2|I & 2|N(34) [I,N℄ : N = |{d1 : d1|I}| & 2|I & 2 = |{d2 : d2|N}|(35) [I,N℄ : N = |{d1 : d1|I}| & 2|I & -(2|N)(36) [I,N℄ : N = |{d1 : d1|I}| & 2|I & -(N|I & I = |{d2 : d2|N}|)(37) [I,N℄ : N = |{M : M = |{d1 : d1|I}| & 2|I}|(38) [I,N℄ : N = |{d1 : d1|I}| & 2|N & -(2|I)(39) [I℄ : (exists N (N = |{d1 : d1|I}| & 2|N))(40) [I,N℄ : N = |{M : M = |{d1 : d1|I}| & 2|M}|Top 20 onepts: 4 16 18 21 24 31 32 33 6 22 30 34 35 38 36 11 7 12 8 9Top 20 live onepts: 4(1) 16 18 21 24 31 32 33 6 22 30 34 35 38 36 11 7 12 8 9Top 20 open onjetures: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20Sorted Prodution Rules: onjunt exists forall math negate size split(41) [I,N℄ : N = |{d1 : d1|I}| & N = |{d2 : d2|N}| & -(2|I)(42) [I℄ : (exists N (N = |{d1 : d1|I}| & N = |{d2 : d2|N}|))(43) [I,N℄ : N = |{M : M = |{d1 : d1|I}| & M = |{d2 : d2|M}|}|(44) [I,N℄ : N = |{d1 : d1|I}| & 2 = |{d2 : d2|N}| & -(2|I)(45) [I,N℄ : N = |{d1 : d1|I}| & 2 = |{d2 : d2|N}| & -(2|N)(46) [I,N℄ : N = |{d1 : d1|I}| & 2 = |{d2 : d2|N}| & -(N|I & I = |{d3 : d3|N}|)E (47) [I℄ : (exists N (N = |{d1 : d1|I}| & 2 = |{d2 : d2|N}|))(48) [I,N℄ : N = |{M : M = |{d1 : d1|I}| & 2 = |{d2 : d2|M}|}|(49) [I℄ : (exists d1 (d1|I & d1 = |{d2 : d2|I}| & 2|I))(50) [I,d1℄ : -(d1|I & d1 = |{d2 : d2|I}| & 2|I)Top 20 onepts: 4 6 24 31 32 33 22 30 34 35 38 49 50 11 36 41 44 45 46 7Top 20 live onepts: 4(1) 6 24 31 32 33 22 30 34 35 38 50 11 36 41 44 45 46 7 12Top 20 open onjetures: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20Sorted Prodution Rules: onjunt exists forall math negate size splityesF | ?- eis::load_sequenes.This may take some time.yesG | ?- print::missing_number_types(100).This will take a few minutesH 5. [I℄ : 2|I2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 4244 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 8284 86 88 90 92 94 96 98 100I 47. [I℄ : (exists N (N = |{d1 : d1|I}| & 2 = |{d2 : d2|N}|))2 3 4 5 7 9 11 13 16 17 19 23 25 29 31 37 41 43 47 49 53 59 6164 67 71 73 79 81 83 89 97J 49. [I℄ : (exists d1 (d1|I & d1 = |{d2 : d2|I}| & 2|I))2 8 12 18 24 36 40 56 60 72 80 84 88 96yesK | ?- eis::assert_new_sequene(47,500).yesL | ?- eis::set(term_overlap_min,7), eis::set(term_overlap_max,10).yesM | ?- eis::subsequenes_of(47).Looking for subsequenes of:47 [abraham,integer,5℄Subjet to:term_overlap_min=7term_overlap_max=10N A023194 Sum of divisors of n is prime.A020591 Smallest nonempty set S ontaining prime divisors of 4k+6for eah k in S.A020613 Smallest nonempty set S ontaining prime divisors of 7k+9for eah k in S.A007505 Primes of form 3.2^n -1.A007700 n, 2n+1, 4n+3 all prime.A031439 a(n) is the greatest prime fator of a(n-1)^2+1...A045703 Primes that an be written as sum of two squares of Fibonai numbers.A037028 a(n) = prime losest to e^n.



B.4 Inventing and Investigating an Integer Sequene 341A002230 Primes with reord values of the least positive primitive root.A037231 Length of Pratt ertifiate for prime inreases.A004062 (6^n - 1)/5 is prime.A034900 a(n) is square mod a(i), i &lt; n; a(n) prime.A030087 Primes suh that digits of p do not appear in p^3.A020599 Smallest nonempty set S ontaining prime divisors of 5k+7for eah k in S.A029973 Palindromi primes in base 5.------O 166 mathes found in 800.86 seonds.yesP | ?- eis::details('A023194').A023194 Sum of divisors of n is prime.---2 4 9 16 25 64 289 729 1681 2401 3481 4096 5041 7921 10201 15625 1716127889 28561 29929 65536 83521 85849 146689 262144 279841 458329 491401531441 552049 579121 597529 683929 703921 707281 734449 829921 1190281---nonn,easy,nie---yes| ?- onept(47)::learn_from_srath(_).yesQ | ?- eis::funtion('A023194',_,Num), \+ prediate(47,[Num℄).noB.4.2 CommentaryEvent Desription See pagesA HR loads and the user selets the default settingsfor number theory. 307B The user hooses the number theory data from thesmalldiv �le. This ontains the numbers 1-10and onepts: integers, divisor and multipliation. 63, 307C The user asks HR to onstrut 50 onepts. 309D Conept 4 is assessed as the most interesting.This onept is the well known � funtion innumber theory (number of divisors of an integer).This onept is always rated in the top 3 mostinteresting during this session. 159E HR invents the onept of integers with a primenumber of divisors. 352F The user loads the Enylopedia of IntegerSequenes. This is not loaded by default as it is avery large �le. 110, 317G The user asks HR to identify those sequenes inthe theory whih are missing from the Enylo-pedia. These are output in order of dereasingomprehensibility. 110



342 Appendix B. Example SessionsEvent Desription See pagesH This is an anomaly { the sequene of even num-bers is present in the Enylopedia, but startswith a zero.I This is the onept of integers with a primenumber of divisors, one of HR's sequenes whihhas sine been added to the Enylopedia ofInteger Sequenes (number A009087). 116, 352J This is the onept of even refatorable numbers,whih has sine been added to the Enylopedia(sequene number 57265).K The sequene from onept 47 is extended upto 500 and added to HR's internal opy of theEnylopedia. 110
L The user stipulates that subsequenes must haveat least 7 overlapping terms with onept 47,but at most 10. The latter restrition is to utdown on the number of sequenes output whihare speialisations of primes (whih will be trivialsubsequenes of onept 47). 114, 110M The user asks for the subsequenes of onept 47. 112, 110N The �rst answer produed is A023194: thoseintegers, n, where the sum of divisors of n isprime. It is not obvious why this should be asubsequene.O 166 mathes are produed (but we have omittedsome of them, due to spae onsiderations).It took around 14 minutes to run through theEnylopedia ompletely.P The user asks for more details about sequeneA023194. 110Q The user heks that all the entries from sequeneA023194 satisfy the onditions of onept 47.This adds greater evidene to the onjeture. 110



Appendix C. Number Theory Results
2, 3, 4, 5, 7, 9, 11, 13, 16, 17, 19, 23, 25, 29, 31, 37, 41, 43, : : :A009087. Integers with a prime number of divisors.We present here proofs of some of the onjetures HR made in number theory,and the other results whih arose from investigations of the onepts andonjetures HR made. We show that the refatorable numbers de�ned by HRhave many interesting properties, some of whih were notied by HR. We alsoprove the onjeture made by HR that if the sum of divisors of an integer isprime, then the number of divisors will be prime. Finally we prove some adho results found by HR. Throughout, where appliable, we briey mentionhow the onjeture was made by HR.C.1 Refatorable NumbersAs disussed in x12.3.2, HR produed a type of integer whih we alled refa-torable numbers.1De�nition 1 (Refatorable Numbers)An integer, n, is refatorable if the number of divisors of n is itself a divisorof n. i.e. �(n)jn.The �rst members of this sequene are:1; 2; 8; 9; 12; 18; 24; 36; 40; 56; 60; 72; 80; 84; 88; 96; : : :For example, 9 is in the sequene, as it has 3 divisors and 3 itself divides 9.Refatorable numbers have many interesting properties. After giving someinitial results, we desribe the relationship between refatorables and somewell known number types. We then look at pairs and triples of refatorables,and end by looking at the distribution of refatorables.1 Named by Toby Walsh and appearing as sequene A033950 in the Enylopediaof Integer Sequenes. A rival name proposed in [Kennedy & Cooper 90℄ is `taunumbers', but the Enylopedia gives preferene to refatorable numbers, andwe follow their example.



344 Appendix C. Number Theory ResultsC.1.1 Initial ResultsLemma 1 (Theorem 273 from [Hardy & Wright 38℄)If the prime fatorisation of integer n is:n = lYi=1 pkii ;then �(n) = lYi=1(ki + 1)Lemma 2For all odd integers a:a is refatorable if and only if 2a is refatorable.Proof of Lemma 2Suppose a is refatorable and has prime fatorisation: pk11 : : : pkll . Then byLemma 1, (k1 + 1) : : : (kl + 1) divides a. Beause a is odd, the prime fa-torisation of 2a will be 2pk11 : : : pkll , where 8i; pi 6= 2. Therefore �(2a) =2(k1 + 1) : : : (kl + 1) whih divides 2a, beause (k1 + 1) : : : (kl + 1) dividesa. Hene 2a is also refatorable. Conversely, suppose that 2a is refatorable.Again, as a is odd, �(2a) = 2(k1 + 1) : : : (kl + 1), whih divides 2a, meaningthat (k1+1) : : : (kl+1) divides a, and so �(a) divides a, hene a is refatorablealso. 2Theorem 1There are an in�nite number of odd refatorables and an in�nite number ofeven refatorables.Proof of Theorem 1From Lemma 1, for any odd prime, p, integers of the form pp�1 will be oddand have p divisors, and so are refatorable. By Lemma 2, integers of the form2pp�1 will be even and refatorable. As there are in�nitely many primes, itfollows that there are in�nitely many odd and even refatorable numbers. 2A more interesting way to prove Theorem 1 is to map eah integer ontoa distint refatorable number. This is ahieving using the following map onthe prime fatorisation of the integer:n = pk11 : : : pkll 7! ppk11 �11 : : : ppkll �1lFor example: 3 = 31 7! 331�1 = 32 = 9;6 = 2131 7! 221�1331�1 = 2132 = 18:



C.1 Refatorable Numbers 345Integers produed by this map will have pk11 : : : pkll (= n) divisors, and henewill be refatorable. Furthermore, as the prime fatorisation of n is unique,the refatorable number output from this map will also be unique, and henethere are an in�nite number of refatorables. Note that this map is not 1:1,as it is easy to show that, for example, the number 12 is refatorable, butannot be written in the form ppk11 �11 : : : ppkll �1l :C.1.2 Relation to Other Number TypesSine primes have two divisors, 2 is the only prime refatorable number. It'salso very easy to show that 2 is the only square-free refatorable number. Wedisuss here some relationships between refatorables and some other wellknown types of number.Theorem 2All odd refatorable numbers are squares.Proof of Theorem 2Suppose the prime fatorisation of a is pk11 : : : pkll and a is odd and refa-torable. Therefore we know that (k1 + 1) : : : (kl + 1) divides a. Therefore, asa has no even divisors, eah ki must be even. Writing eah ki as 2ji we seethat: a = p2j11 : : : p2jll = �pj11 : : : pjll �2and hene a is a square number. 2While the above theorem was onjetured by HR, we initially overlookedit, and disovered it independently. In fat, we were led to the disovery ofthe result when trying to prove a di�erent onjeture made by HR:Conjeture 1Given a refatorable number, n, then de�ne the following funtion:f(n) = jf(a; b) 2 N�N : ab = n and a 6= bgjThen f(n) divides n if and only if n is a non-square.It turned out that this onjeture was false, but the smallest ounterexamplesto it are 36360900, 79388100 and 155600676, whih are the �rst three squarerefatorable numbers that are divisible by f(n).We used HR to �nd sequenes desribed with the \nie" keyword in theEnylopedia of Integer Sequenes whih were disjoint from refatorables.There were a hundred answers, many of whih were speialisations of primenumbers. However, perfet numbers were also output. Perfet numbers arethose positive integers for whih the sum of the divisors equals twie thenumber itself. We use the notation �(n) for the sum of the divisors of n. Forexample, 28 is a perfet number beause the divisors of 28 are 1; 2; 4; 7; 14and 28, so:



346 Appendix C. Number Theory Results�(28) = 1 + 2 + 4 + 7 + 14 + 28 = 56 = 2� 28Perfet numbers have been studied sine antiquity and are a very importantonept in number theory. For more information on perfet numbers, see[Beiler 96℄. HR had therefore notied a relation between refatorables andperfet numbers, whih we formulated as the following theorem:Theorem 3Perfet numbers are not refatorable.Proof of Theorem 3We need to refer to Theorems 18 and 277 from [Hardy & Wright 38℄:� Theorem 18: if n > 1 and an � 1 is prime then a = 2 and n is prime.� Theorem 277: (paraphrased): Any even perfet number is of the form2n�1(2n � 1) where 2n � 1 is prime.(a) Even perfet numbers. Using Theorem 277 above we know that if a is aneven perfet number, it has the form 2n�1(2n � 1) where 2n � 1 is an oddprime, say p. Using Theorem 18 above, we know that n must be prime also.Using Lemma 1, we see that:�(a) = �(2n�1(2n � 1)) = �(2n�1p) = 2n;so a has 2n divisors. If a is refatorable then 2n divides a, whih means thateither n = 2 or n = p (as n is a prime and a = 2n�1p). If n = 2 thena = 22�1(22 � 1) = 6, whih is not refatorable. If n = p then n = 2n � 1,whih is impossible for a prime n, beause for any n > 1, 2n � 1 > n. Henea annot be refatorable.(b) Odd perfet numbers. No odd perfet numbers are known. If one wereto exist, say b with divisors d1 < : : : < dk = b, then eah di must be odd,and by de�nition, d1 + : : : + dk�1 = b. The sum of an even number of oddintegers is even, so, as b is odd, we know that k� 1 must be odd, so b has aneven number of divisors. Therefore b annot be refatorable as it is odd andannot be divisible by an even number. 2Note thatmultiply perfet numbers, de�ned to be integers where the sumof divisors is a multiple of the number, an be refatorable. For example, thenumber 672 is suh that �(672) = 3 � 672, and this is refatorable (it isatually the smallest refatorable multiply perfet number).Furthermore, there is an appealing similarity between perfet numbersand refatorables. Using the methods disussed in x7.5, HR disovered thefollowing theorem:



C.1 Refatorable Numbers 347Theorem 4For any even perfet number x, there is an integer, a, suh that lm(a; �(a)) =x. (where lm(u; v) is the lowest ommon multiple of u and v).Proof of Theorem 4From Theorem 277 of [Hardy & Wright 38℄, we note that x = 2n�1(2n � 1)for some n, where 2n � 1 is a prime. If we take a = 2n�1 then �(a) =1 + 2 + : : : + 2n�1 = 2n � 1, and so lm(a; �(a)) = 2n�1(2n � 1) = x asrequired. 2If we note that for all refatorables, lm(n; �(n)) = n, (whih HR alsoonjetured), we see the following similarity between perfet numbers andrefatorables:� Refatorable numbers are of the form lm(a; �(a)) for some a.� Perfet numbers are of the form lm(a; �(a)) for some a.In fat:� Refatorable numbers are those integers, n, for whih lm(n; �(n)) = n.� Odd prime numbers are those integers, n, for whih lm(n; �(n)) = 2n.� Perfet numbers are those integers, n, for whih lm(n; �(n)) = 2n.By asking HR to �nd subsequenes and supersequenes of refatorables fromthe Enylopedia, it found the following three onjetures. We have provedthe �rst (Theorem 5), but the �nal two remain open (Conjetures 2 and 3).Theorem 5Refatorable numbers are only ongruent to 0, 1, 2 or 4 mod 8.Proof of Theorem 5By Theorem 2, odd refatorables are squares. If an odd number an be writtenas 8n + 1 then (8n + 1)2 = 64n2 + 16n + 1 � 1(mod 8). A similar analysisfor odd numbers written as 8n+3, 8n+5 and 8n+7 shows that the square ofan odd number is always ongruent to 1 mod 8. Hene odd refatorables areongruent to 1 mod 8. Even numbers must be ongruent to 0, 2, 4 or 6 mod8. However, if an even refatorable was ongruent to 6 mod 8, then it wouldbe of the form 8n+ 6 = 2(4n+ 3) for some n. By Lemma 2 this means that4n + 3 is refatorable. But 4n + 3 is ongruent to 3 or 7 mod 8, whih is aontradition to our above result that odd refatorables are ongruent to 1mod 8. Hene even refatorables are ongruent to 0; 2 or 4 mod 8. 2Conjeture 2Integers, n, for whih �(�(n)) = n are refatorable.



348 Appendix C. Number Theory ResultsWe use the notation �(n) to be the number of integers less than and relativelyprime to n. (Where two numbers are relatively prime if the only divisor theyshare is 1).When investigating this onjeture, we notied the following pattern:�(�(22n�1)) = 22n�1;whih was true for n = 1; 2; 3; 4 and 5.Using Theorem 275 from [Hardy & Wright 38℄, we see that:�(�(22n�1)) = �(22n � 1)= �(1 + 2 + : : :+ 22n�1)= �((1 + 2)(1 + 4) : : : (1 + 22n�2)(1 + 22n�1))Now if eah (1 + 22i) is prime, by Theorem 62 of [Hardy & Wright 38℄:�(�(22n�1)) = �(1 + 2)�(1 + 4) : : : �(1 + 22n�1)= (2)(4) : : : (22n�1)= 21+2+4+:::+2n�1= 22n�1Unfortunately (1 + 226) is omposite, so the pattern stops at n = 6.Conjeture 3For all integers k � 3, numbers of the form k!=3 are refatorable.C.1.3 Pairs and Triples of RefatorablesAs odd refatorables are square numbers, we annot have four or more on-seutive refatorables sine positive squares always di�er by more than 2.However, there are 13 adjaent pairs of refatorable numbers between 1and 1,000,000. For example, the �rst four pairs of refatorable numbers are(1; 2); (8; 9); (1520; 1521) and (50624; 50625). We have not yet found any ad-jaent triples of refatorables.Theorem 6If refatorable numbers x and y are relatively prime, then xy will also berefatorable. In partiular if a and a + 1 are refatorable then a(a + 1) willbe refatorable.Proof of Theorem 6If x and y are relatively prime, then �(xy) = �(x)�(y), and if they are bothrefatorable, then �(x)jx and �(y)jy, so �(xy)jxy and we see that xy is alsorefatorable. Two onseutive integers are relatively prime, so the produt oftwo onseutive refatorables will also be refatorable. 2Hene, if we multiply any adjaent pair of refatorables, we get a third.For example, 8� 9 = 72 is refatorable, and so is 1520� 1521 = 2311920.



C.1 Refatorable Numbers 349Conjeture 4There are in�nitely many pairs of refatorable numbers.The above onjeture is based purely on our intuition of refatorable numbersand was not made by HR. As yet, we have no insight about the truth of thisstatement.We annot yet rule out triples of refatorable numbers, but the followingtheorem imposes a very restritive onstraint on their value.Theorem 7If (a � 1; a; a+ 1) is a triple of refatorable numbers, then a must be of theform:  nXi=0 2i(2n+1C2i)!2for some integer n. Note that xCy = x!(x�y)!y! .Proof of Theorem 7By Theorem 5, three onseutive refatorables must be of the form (8m; 8m+1; 8m+ 2) for some m. Hene a must be odd, and so by Theorem 2, a mustbe a square number, say b2. Furthermore, a+1 is not divisible by 4, so musthave prime fatorisation a + 1 = 2pk11 : : : pkll , where the pis are distint oddprimes. Therefore �(a + 1) = 2(k1 + 1) : : : (kl + 1) and eah ki + 1 must beodd as a + 1 is refatorable. So eah ki must be even and hene a + 1 istwie an odd square number, so we an write a + 1 = 22, in partiular,b2 + 1 = 22. This means that (b; ) must be a solution of the Diophantineequation x2 � 2y2 = �1. Theorem 244 of [Hardy & Wright 38℄ states thatpositive integer solutions to this equation are given by:x+ yp2 = (1 +p2)2n+1for integers n. Expanding the oeÆient of x on the right hand side, we get:x = nXi=0 2i �2n+1C2i� (C.1)and so a is the square of this, as required. 2Numbers of the form in equation C.1 beome very large as n inreases.For example, if we take n = 10, then a = 2982076586042449. By onsideringn � 35 we have alulated that there are no triples of refatorables between1 and 1053.Conjeture 5There are no triples of refatorable numbers.Again, this onjeture was not made by HR and is based on the fat abovethat there are no triples of refatorables less than 1053.



350 Appendix C. Number Theory ResultsC.1.4 DistributionWe annot yet give an aurate measure for the number of refatorables lessthan a given n, but we an say how many there are with a given number ofdivisors.Theorem 8The number of refatorables with n divisors is:� 1 if n = 1 or n = 4.� k! if n is the produt of k distint primes (i.e. it is square free).� In�nite otherwise.Proof of Theorem 8(i) Clearly 1 is the only refatorable number with one divisor. If an integer,s, has four divisors, then it must be of the form p3 or pq for distint primesp and q. Taking the �rst ase, if s is refatorable, then p must be 2 and therefatorable number is 8. In the seond ase, there are no refatorables of theform pq beause 4 annot divide the produt of two distint primes. Henethere is a single refatorable number with 4 divisors.(ii) If n is the produt of k distint primes, then n = p1 : : : pk and any integer,b, with n divisors must be of the form:b = ap1�11 : : : apk�1kfor distint primes a1; : : : ; ak. If b is refatorable with n divisors, then n mustdivide b, so fa1; : : : ; akg = fp1; : : : ; pkg and there are k! ways to hoose theai's from the pi's. Eah hoie will produe a di�erent prime fatorisationfor b, whih, beause prime fatorisations are unique, will produe a di�erentvalue for b. Hene there are k! possibilities for b.(iii) Suppose that n is not square free and has prime fatorisation pm11 : : : pmkk .Hene,mi > 1 for somemi. Then, for any prime, q, suh that q =2 fp1; : : : ; pkg,the integer:s = qpi�1ppm11 �11 : : : ppmi�1i �1i : : : ppmkk �1k (C.2)has n divisors. This is beause, by the appliation of Lemma 1 above:�(s) = pi(pm11 : : : pmi�1i�1 pmi�1i pmi+1i+1 : : : pmkk ) = pm11 : : : pmkk = nComparing the prime fatorisations of s and �(s), we see that s is refatorableunless mi > pmi�1i � 1, whih only ours if pi = mi = 2. Hene, beausethere are in�nitely many primes, for any square free integer n, there arein�nitely many numbers of the form (C.2) above whih have n divisors and



C.1 Refatorable Numbers 351are refatorable, with two exeptions. Firstly, if n = 22, then n = 4, whihhas been dealt with above. Seondly, if n = 22p2 : : : pk, then for any prime,q, suh that q =2 fp2; : : : ; pkg, the integer:t = q2p2�1p2pp3�13 : : : ppk�1k (C.3)has 4p2p3 : : : pk = n divisors, and is refatorable beause p2 > 2 impliesp2 � 1 � 2, so n divides t. Again, beause there are in�nitely many primenumbers, there are in�nitely many numbers of the form (C.3). Therefore,given an integer, n, of the form n = 22p2 : : : pk, there are in�nitely manyrefatorable numbers with n divisors. 2This theorem shows that, for instane, there are preisely 2 refatorablenumbers with six divisors, namely 12 and 18, and preisely 6 refatorableswith 30 divisors, namely:243251 = 720 243152 = 1200223451 = 1620 213452 = 4050223154 = 7500 213254 = 11250Using the GAP program, [Gap 00℄, we have alulated the distribution ofthe refatorables, and present the results ompared with the distribution ofthe prime numbers in Table C.1.n < primes refas. odd even prime refas.refas. refas. pairs pairs10 4 4 2 2 2 2102 25 16 2 14 8 2103 168 92 5 87 35 2104 1229 665 15 650 205 3105 9592 5257 34 5223 1224 5106 78498 44705 87 44618 8169 13107 664579 394240 237 394003 58980 27108 5761455 3558181 650 3557531 440312 75109 50847534 32608999 1813 32607186 3424506 1871010 455052511 302172507 5152 302167355 27412679 4681011 4118054813 ? 14889 ? 224376048 1219Table C.1 The distribution of refatorables ompared with primesThe values in bold fae have been supplied by David Wilson, and weare very grateful for his ontribution [Wilson & Sloane 99℄. David has alsopointed out that if (a � 1; a; a + 1) is a triple of refatorables, then eahprime fator of a must our to at least the 6th power [Wilson 00℄. Note thatTheorem 2 has helped us to alulate the distribution of odd refatorablesfurther than even refatorables. From this empirial evidene, we an makea predition about the distribution of the refatorables:



352 Appendix C. Number Theory ResultsConjeture 6The number of refatorables less than x is at least x2log(x) .We made this onjeture beause the prime number theorem (see Theorem6 from [Hardy & Wright 38℄) states that the number of primes less than xtends to xlog(x) , and the number of refatorables in Table C.1 is always morethan half the number of primes.C.2 Integers with a Prime Number of DivisorsWe are interested here in integers where the number of divisors is a primenumber, i.e. those n for whih �(�(n)) = 2. These are a type of integerinvented by HR (sequene number A009087) with �rst terms as follows:2; 3; 4; 5; 7; 9; 11; 13; 16; 17; 19; 23; 25; 29; 31; 37; 41; 43; 47; 49; 53; 59; 61; : : :As disussed in x7.5 we are interested in proving a pleasing result HR on-jetured: if the sum of the divisors of n is prime, then the number of divisorsof n will be prime. We prove a more general result (Theorem 9 below) fromwhih this theorem follows as a orollary. We �rst require a lemma aboutthe nature of integers with a prime number of divisors and some results from[Hardy & Wright 38℄.Lemma 3For all integers, n:�(n) is prime () n = pq�1 for primes p and q:Proof of Lemma 3If n = pq�1 then �(n) = q, hene �(n) is prime. Conversely, suppose that theprime fatorisation of n is pk11 : : : pkll , and that �(n) is prime. Now �(n) =(k1 + 1) : : : (kl + 1), hene l = 1, and n must be of the form pa for some a.So, �(pa) = a+ 1, and a must be one less than a prime, q. 2Lemma 4 (Theorem 274 of [Hardy & Wright 38℄)If the prime fatorisation of integer n is:n = lYi=1 pkii ;then: �m(n) = lYi=1 pm(ki+1)i � 1pi � 1 !(where �m(n) is the sum of the mth powers of the divisors of n).



C.2 Integers with a Prime Number of Divisors 353We also need to remind ourselves of the following well known identity:ab � 1a� 1 = 1 + a2 + : : :+ ab�1 = b�1Xi=0 ai:Theorem 98 m;n 2 N; �(�m (n)) = 2 ) �(�(n)) = 2 .Proof of Theorem 9Let the prime fatorisation of n be pk11 : : : pkll , and letm be an integer. Supposealso that �(�m(n)) = 2, i.e. that �m(n) is prime. We see from Lemma 4 that�m(n) has at least l + 1 fators (ounting 1 as well). Therefore, as �m(n)is prime, l = 1. Hene we an write n = pa for some prime p and somea 2 N. Assume that �(n) is omposite, then �(n) = a + 1 = xy for somex; y 2 N; x > 1 ; y > 1 . Hene a = xy � 1. So, using Lemma 4 again:�m(n) = pm(a+1) � 1p� 1 = pm(xy�1+1) � 1p� 1 = pmxy � 1p� 1= (pmx � 1)(p(y�1)mx + p(y�2)mx + : : :+ pmx + 1)p� 1= pmx � 1p� 1 yXi=1 p(y�i)mx= mx�1Xi=0 pi yXj=1 p(y�j)mxAs neither of the summations in this �nal produt equal 1, this provides aontradition, beause �m(n) is prime. Hene our assumption that �(n) isomposite must be false, and we see that �(n) is a prime. 2Corollary 1Taking m = 1 in Theorem 9, we see that:8 n 2 N; �(�(n)) = 2 ) �(�(n)) = 2That is, if the sum of divisors of n is prime, then the number of divisors of nwill be prime.Corollary 2If the sum of divisors of integer n is prime then n will be of the form pq�1for primes p and q.This �nal orollary enables a quik alulation of the terms of the sequenewhere �(n) is prime (sequene number A023914 in the Enylopedia).



354 Appendix C. Number Theory ResultsC.3 Other ResultsUsing the Enylopedia of Integer Sequenes, HR notied that perfet num-bers form a subsequene of sequene A007517, the sequene where the nthterm is �(n)(�(n) � n). We interpreted this result as the following theorem.Theorem 10For any perfet number x, there is an integer, a, suh that �(a)(�(a)�a) = x.Proof of Theorem 10Using Theorem 277 from [Hardy & Wright 38℄ again, we know that if x is aneven perfet number, it has the form 2n�1(2n � 1). If we take a = 2n, then�(a) = 2n+1 � 1 and the odd integers less than a will be relatively prime toit. So �(a) = a=2 = 2n�1. Therefore:�(a)(�(a) � a) = 2n�1(2n+1 � 1� 2n)= 2n�1(2n � 1)= xas required. 2For the �nal investigation of HR's number theory onepts, we look atthis funtion de�ned by HR:De�nition 2Let f(n) be the funtion de�ned on N given by:f(n) = jf(a; b) 2 N�N : a � b = n and ajbgj:We see that f ounts the number of ways an integer an be written as aprodut of two divisors, the �rst of whih divides the seond. We submittedthis and it was aepted into the Enylopedia, being given sequene numberA046951. We took an interest in this funtion beause it is similar to the �funtion. The �rst terms are:1; 1; 1; 2; 1; 1; 1; 2; 2; 1; 1; 2; 1; 1; 1; 3; 1; 2;1; 2; 1; 1; 1; 2; 2; 1; 2; 2; 1; 1; 1; 3; 1; 1; 1; 4; 1To produe more sequenes, we also implemented some ode whih took afuntion sequene suh as the one above and produed the `reord' sequenefrom it, as desribed on page 234 above. The reord sequene is produed by�nding those integers whih output a bigger number than any smaller numberin the original funtion sequene. This transformation has beome a produ-tion rule in the Java version of HR mentioned in Chapter 14, but disussionof it is beyond the sope of this book. For example, the �rst appearane ofthe number 1 in the sequene above is as the output for the number 1. The



C.3 Other Results 355�rst appearane of the number 2 is as the output for number 4 and the �rstappearane of the number 3 is as the output for number 16. Continuing inthis fashion, the �rst few terms of the reord sequene for funtion f aboveare: 1; 4; 16; 36; 144 and 576. HR notied that these are square numbers andwe investigated this, whih led to the following interesting result.Theorem 11The nth integer setting the reord for f as above is the square of the nthhighly omposite number. (Where a highly omposite number has more di-visors than any smaller integer { sequene A002182 in the Enylopedia ofInteger Sequenes).To prove this, we need the following lemma:Lemma 5For a given integer, n, let s(n) be the largest square number whih dividesn. Then: f(n) = � �ps(n)� :(With f(n) as in De�nition 2 above).Proof of Lemma 5Let the prime fatorisation of n be pk11 : : : pkmm . Then the largest square di-viding n is: p2[ k12 ℄1 : : : p2[ km2 ℄mand the square root of this is: p[ k12 ℄1 : : : p[ km2 ℄mwhere [z℄ denotes the integer part of rational z. Now the pairs of integerswhose produt is n are of the form:ha; bi = hpx11 : : : pxmm ; pk1�x11 : : : pkm�xmm i;and if ajb (as ditated by f(n)), then 8 i; xi � ki�xi, that is, 0 � xi � ki=2.Therefore, there are �ki2 �+ 1 possibilities for xi. So, if we ount the numberof possible pairs, we see that:f(n) = ��k12 �+ 1� : : :��km2 �+ 1�= � �p[ k12 ℄1 : : : p[ km2 ℄m �= � �ps(n)�as required. 2



356 Appendix C. Number Theory ResultsProof of Theorem 11Suppose that a sets a reord for f . Therefore for i = 1; 2; : : : ; a � 1, byde�nition, f(a) > f(i), and by Lemma 5, this means that � �ps(a)� >� �ps(i)� for i = 1; 2; : : : a � 1. Let 2 be the largest square less than orequal to a. Then, for j = 1; 4; 9; : : : ; (� 1)2, � �ps(a)� > � �ps(j)�. But,as eah j is a square number, ps(j) = pj, and we see that:� �ps(a)� > �(1)� �ps(a)� > �(2)... (C.4)� �ps(a)� > �( � 1)If we suppose that a > 2, then beause 2 is the largest square less thanor equal to a, we see that 2 < a < ( + 1)2. Hene the largest squaredividing a annot be larger than ( + 1)2 and it annot be ( + 1)2 or 2.Therefore, the largest square dividing a will be less than 2 and ps(a) < .But then ps(a) =  � k for some k, and � �ps(a)� = �( � k) whihontradits equations (C.4). Hene it must be the ase that a = 2, whihmakes ps(a) = . Furthermore, from equations (C.4) above, we note that�() > �( � i) for i = 1; 2; : : : ;  � 1 and so  is a highly omposite numberand a is the square of a highly omposite number. 2C.4 Divisor GraphsFor any integer we an draw a graph using the divisors as nodes and onnet-ing any two divisors by an edge if they have a partiular property. Suh on-strutions were inspired by initial experimentation with HR working arossdomains, although the onept of divisor graphs annot be attributed to HR.As an example, if we join any two divisors where one divides the other, weget the following graph for the number 12:
1 2
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6 4



C.4 Divisor Graphs 357Asking questions about the nodes and edges of suh graphs will be equiv-alent to asking questions about the divisors of integers. Topologial questionsabout divisor graphs are muh more interesting. In partiular, we have tried todetermine whih integers produe divisor graphs whih are planar, i.e. thereis a way to draw them in the plane where no two edges ross. To solve this,we need Kuratowski's theorem [Kuratowski 30℄, that a graph is non-planarif and only if it has a subgraph whih is homeomorphi to either K5 or K3;3.The details of this theorem are not needed here, as our study will be empiri-al, using the isplanar funtion of the Maple program [Abell & Braselton 94℄,to determine whether or not a partiular graph is planar.To proeed, we �rst note that if a divides b, the divisor graph for a willbe a subgraph of b. This is lear beause the divisors of a will be divisors of b,and they will still divide eah other in the same way. Note also that if a graphG has a non-planar subgraph then G itself must be non-planar. Furthermore,we note that the atual values of the divisors is immaterial. For example, theintegers 12 and 20 will have the same divisor graphs beause they an bothbe written as p2q for primes p and q and the way in whih the divisors divideeah other will be the same regardless of the values of p and q.We say that the prime signature of an integer with prime fatorisationx = pn11 pn22 : : : pnkk is the set fn1; n2; : : : ; nkg. Hene, two integers will haveisomorphi divisor graphs if they have the same prime signature. Further-more, if integer a divides integer b, the prime signature of a will be a subsetof the prime signature of b. These observations provide us with a shemefor determining whih integers have planar divisor graphs. If we �nd the setof smallest prime signatures (in the sense that they are subsets of all otherprime signatures), whih have non-planar divisor graphs, then only the primesignatures whih are not subsets of these will have planar divisor graphs.We an enumerate over the number of prime fators and the powers ofthe primes. Using the isplanar funtion supplied with Maple, we �nd thatintegers of the form pqr have non-planar divisor graphs. In fat, the graphsprodued are homeomorphi to K3. Hene any integer divisible by three ormore primes will have non-planar divisor graphs. Therefore, we only have tohek integers of the form pnqm for values of n and m. We found that integersof the form p4 had non-planar divisor graphs, as did integers of the form p2q2and p3q. Hene we have enumerated all the ases where the divisor graphis planar: only the integer 1 and integers with one of the following primesignatures have planar divisor graphs:p; p2; p3; pq; p2qOur initial hoie for joining nodes where one divisor divides the otherwas arbitrary. Similarly, we ould have joined nodes where one divisor wasrelatively prime to the other. We have used Maple to perform a similar anal-ysis for di�erent graph onstrutions, with the results summarised in thefollowing theorem.



358 Appendix C. Number Theory ResultsTheorem 12Given an integer n, de�ne the divisor graph of n to be the graph formed bywriting down the divisors of n and joining any two by an edge if one dividesthe other. Then the only integers other than 1 whih have a planar divisorgraph are of the form: p; p2; p3; pq; p2qfor primes p and q.Next, de�ne the o-prime graph of n to be the graph formed by writingdown the divisors of n and joining any two by an edge if they are relativelyprime. Then the only integers other than 1 whih have a planar o-primegraph are of the form: pi; pq; p2q; p2q2; pqrfor primes p; q and r and any integer i.Next, de�ne the prime signature graph of n to be the graph formedby writing down the divisors of n and joining any two by an edge if they havethe same prime signature. Then the only integers other than 1 whih have aplanar prime signature graph are of the form:pi; piqj ; piqjrfor primes p; q and r and integers i and j.We provide a Maple worksheet available here:http://www.dai.ed.a.uk/~simono/paperswhih veri�es these and similar results about divisor graphs.



Glossary
�(n) = number of divisors of integer n.�(n) = sum of divisors of n.�m(n) = sum of the mth powers of the divisors of n.�(n) = number of positive integers less than n and o-prime to it.�(n) = number of primes less than or equal to n.ajb signi�es that integer a divides integer b.n = jfa : p(a)gj states that n is the number of objets satisfying prediate p.N is taken to be the set of natural (positive) numbers, i.e. 1; 2; 3; : : :AbelianA �nite algebra A is Abelian if 8 a; b 2 A; a � b = b � a:AlgebraA set of elements along with a multipliation funtion assigning a thirdelement to every pair of elements subjet to various axioms. In this book, wemainly disuss algebras taken from �nite algebrai systems, where the set ofelements is �nite.AM programThe theory formation program written by Douglas Lenat [Lenat 82℄.Appliability onjetureSee onjeture.ArityThe arity of a onept is the number of olumns in its data table, oralternatively, the number of variables in its prediate de�nition.AxiomA theorem whih is held to be true about the objets of a domain. Forinstane, in group theory, one of the axioms is assoiativity: for all triples ofelements in every group, the following is true: a � (b � ) = (a � b) � .



360 GlossaryBACON programsThe series of sienti� onjeture making program written by Langley etal. [Langley et al. 87℄.Bagai et al SystemThe theory formation program written by Bagai et al. [Bagai et al. 93℄.Classially interestingA onept or onjeture is lassially interesting if it has appeared in themathematial literature.Compose prodution ruleA prodution rule able to form onjuntions of prediates and the om-position of funtions. See prodution rule.Co-primeTwo integers are o-prime if they share no prime divisors. See primenumbers.ConeptA onept in HR omprises a data table and optionally a de�nition. Seedata table, de�nition.ConjetureA onjeture in HR is a statement about one or two onepts. The on-jetures an state the logial equivalene of two onepts (equivalene on-jetures), the non-existene of models for a partiular onept (non-existeneonjetures), the impliation of one onept by another (impliation onje-tures) or the restrition of the models of a onept to a set of �nite examples(appliability onjetures). See onept, de�nition, models.Constrution historyThe onstrution history of a onept is a triple of (i) old onept(s), (ii)prodution rule and (iii) parameterisation desribing exatly how the oneptwas onstruted from previous ones.Data tableThe data table of a onept is the set of tuples taken from the dataavailable whih satisfy the de�nition of the onept. In HR, onepts arerepresented by their data tables.DeompositionA way of breaking eah entity into a �nite set of sub-objets, e.g, deom-posing a group into its elements, a graph into its nodes, or an integer into itsdivisors.



Glossary 361De�nitionA written desription of the prediate whih is true of all the tuples ina onept's data table. There may be more than one de�nition for everyonept. In HR, there are two formats for eah de�nition, one in an Otterstyle and one in a Prolog style.Enylopedia of Integer SequenesAn online database of more than 60,000 integer sequenes olleted byNeil Sloane over 35 years, with ontributions from many mathematiians,[Sloane 00℄. See integer sequene.EntityAn objet of interest, suh as a group, graph or integer whih is presentin the data HR has.Evaluation funtionA weighted sum of heuristi measures alulated to give an overall es-timate of the worth of onepts. There is a similar evaluation funtion foronjetures. See heuristi measure.Equivalene onjetureSee onjeture.Exists prodution ruleA prodution rule whih introdues existential quanti�ation. See produ-tion rule.Forall prodution ruleA prodution rule whih introdues universal quanti�ation. See produ-tion rule.GraÆtiThe onjeture making program written by Siemion Fajtlowiz[Fajtlowiz 88℄.GraphA olletion of nodes and edges between nodes. In this book, we mainlydisuss simple onneted graphs, whih have no edges between an elementand itself, and a path onneting every pair of nodes.GroupA �nite algebra satisfying the assoiative, identity and inverse axioms.See algebra.GT programThe theory formation program written by Susan Epstein [Epstein 88℄.



362 GlossaryHeuristi measureA alulation based on some aspet of a onept/onjeture whih an beused to assess the relative worth of the onept/onjeture.IdempotentAn element x in a �nite algebra is idempotent if x � x = x. See algebra.Impliation onjetureSee onjeture.Integer sequeneA list of integers (usually taken to be positive in this book). They are notneessarily inreasing. See Enylopedia of Integer Sequenes.IL programThe theory formation program written by Mihael Sims [Sims 90℄.MACEThe MACE model generator written by William MCune[MCune 94℄.Math prodution ruleA prodution rule whih produes new onepts by making inputs equal.See prodution rule.ModelA tuple of objets whih satisfy the de�nition of a onept. We also disussour \model" of theory formation, whih means the design and implementationof HR.Negate prodution ruleA prodution rule whih introdues negation by �nding omplements ofdata. See prodution rule.Non-existene onjetureSee onjeture.OtterThe Otter resolution theorem prover written by William MCune[MCune 90℄.Perfet numberAn integer n for whih the sum of the proper divisors of n equals n.Prime numberA positive integer with exatly two divisors.



Glossary 363Prodution ruleA onstrution tehnique whih takes the data table of an old onept andturns it into a data table for a new onept. Prodution rules also take thede�nition of the old onept and produe a de�nition for the new onept.Eah prodution rule has a set of pre-onditions whih a onept must satisfybefore the onstrution an take plae.Progol programThe Indutive Logi Programming mahine learning program written byStephen Muggleton [Muggleton 95℄.QuasigroupA quasigroup is a �nite algebra with every element appearing in everyrow and olumn of the multipliation table. See algebra.RefatorableAn integer n is alled refatorable if the number of divisors of n is itselfa divisor of n, e.g. 9 is refatorable beause �(9) divides 9.RingAn algebra with two operations (ommonly alled multipliation and ad-dition). The addition operation forms an Abelian group and is distributiveover the multipliation operation. See Abelian, algebra, group.Size prodution ruleA prodution rule whih ounts set sizes. See prodution rule.Split prodution ruleA prodution rule whih instantiates variables. See prodution rule.Square numberAn integer of the form m�m for some m 2 N.Sub-objetOne of a �nite set of objets whih result from the deomposition of anentity. See deomposition.TypesThe \types" of a onept omprises the list of the types of objets andsub-objets in the olumns of the data table of the onept.
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